Introduction
Mechanical engineering combines principles from mathematics and physics with creativity, problem-solving and teamwork skills to design, manufacture, operate and maintain physical machines and systems.
Study Information
At a Glance
- Learning Mode
- On Campus Learning
- Degree Qualification
- BEng
- Duration
- 48 months
- Study Mode
- Full Time
- Start Month
- September
- UCAS Code
- H300
- Pathway Programme Available
- Undergraduate Foundation Programme
Mechanical engineers work at the forefront of some of the biggest technological challenges we face today, such as providing sustainable energy and intelligent transport systems, designing medical devices and developing machines and systems to increase food production or explore the outer frontier of space.
You will study topics such as fluid dynamics, thermodynamics, and materials science and learn how to use advanced computer-aided engineering tools and techniques to prepare you for a career in production, process or manufacturing engineering.
Our teaching is supported by world-class facilities, including laboratories dedicated to particular areas of work such as satellite communications, computer-aided design, electrical machines, materials testing, laser welding, hydraulics and fluids, large structures and geotechnics.
At Aberdeen, our interdisciplinary approach means that during your first two years, you will study the fundamentals of each engineering discipline before specialising in mechanical engineering in your third year. This broad-based approach means that you can keep your options open while also gaining a wide range of perspectives and skills - something that sets Aberdeen graduates apart and makes you better equipped to collaborate, innovate and lead in the workplace.
Did you know? According to the Royal Academy of Engineering, Aberdeen is one of 13 engineering hot spots in the UK with over 8,000 engineering businesses across the city and surrounding region. The School of Engineering has strong links with industry, including local, national and international organisations, who support our teaching through guest lectures and seminars, placement opportunities, site visits and scholarships.
If you are interested in the mechanics and dynamics of movement, are fascinated by how things work and want to contribute positively to a sustainable future for people and our planet, then join us here at the University of Aberdeen.
What You'll Study
The first two years cover general Engineering, with elements of Chemical, Mechanical, Petroleum and Electrical/Electronics, as well as Civil. In the later years you specialise, following your chosen discipline in greater depth. You do not need to finalise your choice of specialisation until you begin third year.
It is possible to move between MEng and BEng and this can be accomplished at any point until the second half session of fourth year. Successful BEng candidates will be offered the chance to change to the MEng and there is no quota, meaning that if grade requirements are met that transfer is guaranteed.
- Year 1
-
Compulsory Courses
- Getting Started at the University of Aberdeen (PD1002)
-
This course, which is prescribed for level 1 undergraduate students (and articulating students who are in their first year at the University), is studied entirely online, takes approximately 5-6 hours to complete and can be taken in one sitting, or spread across a number of weeks.
Topics include orientation overview, equality and diversity, health, safety and cyber security and how to make the most of your time at university in relation to careers and employability.
Successful completion of this course will be recorded on your Enhanced Transcript as ‘Achieved’.
- Principles of Electronics (EG1008)
-
15 Credit Points
The aim of the course is to introduce basic concepts of electrical & electronics within a context of general engineering. The topics covered are kept at an elementary level with the aim of providing the foundational material for subsequent courses at levels 1 and 2. The course adopts the philosophy of application oriented teaching. During each topic the students will be provided with examples of day-to-day devices. Topics covered include dc circuit analysis, electronic amplifiers, digital circuits, optoelectronics, and ac theory.
- CAD and Communication in Engineering Practice (EG1010)
-
15 Credit Points
The course is designed to introduce the students to different methods of communication in the process of interchanging ideas and information. Oral presentation and writing of technical reports are introduced. The importing data from web-based and library-based sources will be integrated through information retrieval and investigative skills training. Professional ethics are covered on plagiarism, copyright and intellectual property. Engineering drawing skills and knowledge of relevant British and International Standards will be developed through intensive training in the use of computer aided design and modelling package, SolidWorks. Standard drawing formats including 3D depiction of stand alone parts and assemblies are covered.
- Fundamentals of Engineering Materials (EG1012)
-
15 Credit Points
Engineering design depends on materials being shaped, finished and joined together. Design requirements define the performance required of the materials. What do engineers need to know about materials to choose and use them successfully? They need a perspective of the world of materials. They need understanding of material properties. They need methods and tools to select the right material for the job. This course will help you develop knowledge and skills required for the successful selection and use of engineering materials.
- Electronics Design (EE1501)
-
15 Credit Points
This course provides an introduction to the design and analysis techniques used within electronic engineering, and to the major active components (diodes and transistors). The course opens with a description of charges, the forces between charges and the concept of electric fields. The second part of the course deals with semiconductor devices, opening with fundamental properties of doped semiconductors.
- Engineering Mathematics 1 (EG1504)
-
15 Credit Points
The course presents fundamental mathematical ideas useful in the study of Engineering. A major focus of the course is on differential and integral calculus. Applications to Engineering problems involving rates of change and averaging processes are emphasized. Complex numbers are introduced and developed. The course provides the necessary mathematical background for other engineering courses in level 2.
- Fundamental Engineering Mechanics (EG1510)
-
15 Credit Points
Engineering Mechanics is concerned with the state of rest or motion of objects subject to the action of forces. The topic is divided into two parts: STATICS which considers the equilibrium of objects which are either at rest or move at a constant velocity, and DYNAMICS which deals with the motion and associated forces of accelerating bodies. The former is particularly applied to beams and truss structures. The latter includes a range of applications, such as car suspension systems, motion of a racing car, missiles, vibration isolation systems, and so on.
Optional Courses
Select a further 30 credit points from courses of choice at Levels 1 or 2.
- Year 2
-
Compulsory Courses
- Fluid Mechanics and Thermodynamics (EG2004)
-
15 Credit Points
The fluid mechanics section of the course begins with the material properties of fluids. This is followed by studying fluid statics and principles of fluid motion. Bernoulli’s equation is used to explain the relationship between pressure and velocity. The final fluids section introduces the students to incompressible flow in pipelines.
The thermodynamics section presents: the gas laws, including Van Der Waals’ equation; the first law of thermodynamics with work done, heat supply, and the definitions of internal energy and enthalpy. The second law is introduced including entropy through the Carnot cycle.
- Process Engineering (EG2011)
-
15 Credit Points
A general engineering course that provides insight into the two main conservation principles, mass and energy. Processes are usually described through block diagrams. This language, common to many disciplines in engineering, helps the engineer to look at their processes with an analytical view. Degree of freedom analysis is addressed, emphasising its importance to solve a set of linear equations that model fundamental balances of mass. Practical examples of Energy balances are displayed, bringing Thermodynamics to a practical level. Heat Transfer is introduced. Process control is introduced, explaining basic control techniques and concepts, i.e sensors, feedback, control loops and PID controllers.
- Engineering Mathematics 2 (EG2012)
-
15 Credit Points
This course follows Engineering Mathematics 1 in introducing all the mathematical objects and techniques needed by engineers. It has three parts:
- Matrices: definitions, operations, inverse and determinant; application to systems of linear equations.
- Ordinary differential equations: 1st order (linear and separable), 2nd order with constant coefficients, forced oscillations and resonance.
- Functions of two variables: partial derivatives and extrema, the chain rule, the heat equation and the wave equation.
- Solids and Structures (EA2502)
-
15 Credit Points
This course provides students with the opportunity to refresh and extend their knowledge to analyse the mechanical behaviour of engineering materials and structures. In particular, mechanical properties of materials, and 2D and 3D stresses and strains are examined, the effects of internal imperfections on the performance of materials under loading, brittle fracture, fatigue and non-destructive testing are discussed. The structural analysis of beams and columns, deflection and buckling, as well as design applications are also considered in the course.
- Design and Computing in Engineering Practice (EG2501)
-
15 Credit Points
A general engineering course that provides an insight into the principles of engineering design process, computer programming in MATLAB and its application in parametric study and basic design optimisation, environmental ethics and sustainability in the context of design, and Computer Aided Design (CAD) using Solidworks. The course also includes hands-on exercises on the manufacture of simple parts using a variety of machine tools and joining processes.
- Electrical and Mechanical Systems (EG2503)
-
15 Credit Points
This course provides students with an integrated development of methods for modelling, analysing and designing systems comprising electrical and mechanical components. In doing so it intends to emphasise to the students the similarity in behaviour between electrical and mechanical systems. The course aims to give an introduction to both electrical machines, circuit and systems, transformers, and similar mechanical systems like gearbox, vibrating system and principles of dynamics, and thus provide the foundation material for several courses at level 3 .
Optional Courses
Select a further 30 credit points from courses of choice at Levels 1 or 2.
- Year 3
-
You have the opportunity to study from a range of courses leading to specialisation in your chosen discipline. The opportunity exists to study a European language to support this study. Formal courses continue to develop your specialist interests.
Compulsory Courses
- Engineering Analysis and Methods 1a (EG3007)
-
15 Credit Points
Modern engineering analysis relies on a wide range of analytical mathematical methods and computational techniques in order to solve a wide range of problems. The aim of this course is to equip students with the necessary skills to quantitatively investigate engineering problems. Examples applying the methods taught to practical situations from across the full range of engineering disciplines will feature heavily in the course.
- Stress Analysis A (EM3015)
-
15 Credit Points
One of the roles of an engineer is to ensure that engineering components perform in service as intended and do not fracture or break into pieces. However, we know that sometimes engineering components do fail in service. Course examines how we determine the magnitude of stresses and level of deformation in engineering components and how these are used to appropriately select the material and dimensions for such component in order to avoid failure. Focus is on using stress analysis to design against failure, and therefore enable students to acquire some of the fundamental knowledge and skills required for engineering design.
- Fluid Mechanics (EM3019)
-
15 Credit Points
The course begins with dimensional analysis and the concept of dynamic similarity applied to fluid flow phenomena. This is followed by sections on the energy and momentum equations applied to a range of problems in civil, mechanical, chemical and petroleum engineering, including steady flow in pipes, design of pump-pipeline systems, cavitation, forces on bends, nozzles and solid bodies, turbomachinery and propeller theory. A section on unsteady flow applies inertia and water hammer theory to the calculation of pressure surge in pipes. The final section deals with flow through porous media such as flow through soils and rocks.
- Engineering Materials (EM3028)
-
15 Credit Points
The course focuses, initially, on the major groups of solid materials – metals, ceramics, polymers, and provides an introduction to materials selection. Strengthening mechanisms in these systems and the relationship between microstructure and mechanical properties are highlighted. The main failure and degradation processes of materials in service, fracture, fatigue, creep and corrosion, are considered. The major welding and adhesive bonding processes are introduced, and structural integrity of welded joints is examined. Finally, the course gives a comprehensive introduction to composite materials and motivation for their use in current structural applications. Manufacturing of different types of composites is reviewed.
- Mechanics of Structures (EA3518)
-
15 Credit Points
The major topic of this course is an introduction to modern methods of elastic structural analysis. In this topic, direct, energy and matrix methods are jointly used to solve, initially, problems of the deformation of simple beams. The theorem of virtual work is introduced in the context of beams and frameworks.
The rigid-plastic analysis of beams is then introduced along with the upper bound theorem and their importance to engineering design.
- Project and Safety Management (EG3599)
-
10 Credit Points
To course aims to provide students with an awareness of purpose, principals, fundamental concepts and strategies of safety and project management.
- Dynamics 1 (EM3511)
-
15 Credit Points
This course introduces the theory of dynamics and the vibration of single and multi-degree of freedom systems, and dynamics of rotating and reciprocating machinery.
- Engineering Thermodynamics (EM3521)
-
10 Credit Points
The course begins introducing thermodynamic properties and reviewing first and second laws. The material is then taken forward into application in a focused module on production of power from heat which includes: steam power plants; internal-combustion and gas-turbine engines. This is followed by a module on refrigeration and liquefaction. The course continues with a detailed discussion of the applications of thermodynamics to flow processes including: duct flow of compressible fluids in pipes and nozzles; turbines; compression processes. The course concludes with a module on psychrometry which includes: humidity data for air-water systems; humidification & dehumidification systems.
- Design of Mechanical Elements (EM3522)
-
10 Credit Points
Aimed at students interested in mechanical engineering and aims to equip students with the skills and knowledge required to take a design requirement/concept to a fully implemented product. It will provide an overview of a multi-stage design methodology followed by procedures for the detailed design of various mechanical elements including gears, shaft and bearings. These procedures will include design to resist fatigue failure and will be taught using an example product. The course will include aspects of sustainability and choice of method for manufacture. Assessed through a series of group design exercises.
- Year 4
-
There are two options of study in year 4. Five compulsory courses are studied and students can then choose between a range of different project options.
Option 1
- EG 4014 BEng Individual Project (30)
First Half Session
- EM 40JJ Fluid Dynamics (10)
- EM 40JP Dynamics 2 (15)
- EM 40JN Heat and Momentum Transfer (10)
- EM 4030 Nonlinear Solid Mechanics (10)
Second Half Session
- EG 4578 Group Design Project (BEng) (15)
- Plus 30 credit points from courses of choice at Levels 3 and 4
Option 2
First Half Session
- EM 40JJ Fluid Dynamics (10)
- EM 40JP Dynamics 2 (15)
- EM 40JN Heat and Momentum Transfer (10)
- EM 4030 Nonlinear Solid Mechanics (10)
- Plus 15 credit points from courses of choice at Levels 3 or 4
Second Half Session
- EG 45PA Individual Project Abroad (BEng) (45)
- EG 4578 Group Design Project (BEng) (15)
Compulsory Courses
- Fluid Dynamics (EM40JJ)
-
10 Credit Points
The course develops incompressible and compressible flow topics of broad interest to mechanical engineers. It demonstrates the link between well-developed theoretical studies and their practical application in offshore technology, aeronautics, engine design and fluid machinery. The course begins with water wave theory with particular application to coastal and offshore engineering. This is followed by consideration of boundary layer development over a flat plate and curved surfaces, leading to boundary layer separation and forces on immersed bodies. These topics are also part of the EA40JF Civil Engineering Hydraulics course. The second part of the course concentrates on compressible flow. Using the fundamental conservation equations, the characteristics of converging-diverging nozzles and accelerating supersonic flows are examined. Plane and oblique shock waves, Prandt-Meyer flow and Navier-Stokes equations are then introduced. The course concludes with a discussion of the behaviour of transonic aerofoils, and the design of supersonic engine inlets.
- Dynamics 2 (EM40JP)
-
15 Credit Points
This course covers several advanced topics in the dynamics of structural and mechanical systems. The aims of the course are to develop analytical approaches to rigid body and flexible continuous systems with a view to the prediction and understanding of the behaviour of engineering components in a dynamic environment, to familiarise the students with the concept of nonlinearity and analyse and interpret the nonlinear dynamic behaviour of engineering systems and structures.
- Heat and Momentum Transfer (EM40JN)
-
10 Credit Points
The course focuses on applied momentum and heat transport in engineering problems. It demonstrates how fundamental design equations can be derived for a wide range of real engineering problems (e.g. nuclear fuel rods, radiation shielding, electrical heaters etc). The course makes it clear that engineering is the art of applying mathematics to the real world and develops the tools required to tackle a wide range of engineering challenges.
The analytical results of transport phenomena are demonstrated in simple systems before discussing more complex systems, such as boiling and condensation, which require the use of semi-empirical correlations to solve.
- Nonlinear Solid Mechanics (EM4030)
-
10 Credit Points
This course provides an understanding of the sources and effects of nonlinearity in solid mechanics with applications to engineering structures and materials.
- Group Design Project (BEng) (EG4578)
-
15 Credit Points
This course is a concentrated design and reporting exercise which requires application of project management and team liaison skills in addition to technical design ability. Specific exercises will include interdisciplinary aspects and will relate to design requirements arising from the professional activities of the School of Engineering or its industrial contacts. Written and oral presentations form part of the course.
Optional Courses
- BEng Individual Project (EG4014)
-
30 Credit Points
To provide the student with the opportunity of pursuing a substantial and realistic exercise in the practice of engineering at or near a professional level, and to further enhance the student's critical and communication skills. The project will usually be carried out at the University of Aberdeen but may be carried out at industry or other research location.
- Individual Project Abroad (BEng) (EG45PA)
-
45 Credit Points
The course is designed to provide students with the opportunity to carry out a project in an approved European institution by pursuing a substantial and realistic exercise in the practice of engineering at or near a professional level, and to further enhance the student's critical and communication skills.
We will endeavour to make all course options available. However, these may be subject to change - see our Student Terms and Conditions page.
How You'll Study
Learning Methods
- Group Projects
- Individual Projects
- Lab Work
- Lectures
- Tutorials
Assessment Methods
Students are assessed by any combination of three assessment methods:
- coursework such as essays and reports completed throughout the course;
- practical assessments of the skills and competencies learnt on the course; and
- written examinations at the end of each course.
The exact mix of these methods differs between subject areas, year of study and individual courses.
Honours projects are typically assessed on the basis of a written dissertation.
Why Study Engineering (Mechanical)?
- Our Mechanical Engineering degrees are accredited by the Engineering Council and are your first step towards achieving Chartered Engineer status with the Institution of Mechanical Engineers (IMechE).
- You can apply to either this four-year BEng (Bachelor of Engineering) in Mechanical Engineering or the 5-year MEng (Master of Engineering) in Mechanical Engineering.
- Apply your engineering skills and gain experience by joining TAU Racing, our student team that designs and builds a racing car and competes in the Formula Student competition.
- We deliver teaching in world-class facilities, including laboratories dedicated to particular areas of work such as satellite communications, computer-aided design, electrical machines, materials testing, laser welding, hydraulics and fluids, large structures and geotechnics.
- According to the Royal Academy of Engineering, Aberdeen is one of 13 engineering hot spots in the UK with over 8,000 engineering businesses across the city and surrounding region. The School of Engineering has strong links with industry, who support our teaching through guest lectures and seminars, placement opportunities, site visits and scholarships.
- There are many student societies directly related to engineering, where you can meet fellow engineering students and develop your interests and new skills, including Chemical Engineering Society, Civil Engineering Society, Electrical & Electronic Engineering Society, Mechanical Engineering Society as well as other than comprise of students from various disciplines, such as the Aerospace Engineering Society, Energy Transition Society, TAU Racing Society and PrototAU.
- The School of Engineering encompasses five disciplines: Chemical Engineering, Civil Engineering, Electrical and Electronic Engineering, Mechanical Engineering, and Petroleum Engineering. The School is strongly interdisciplinary and students gain experience in each engineering discipline, making them highly sought-after by employers.
- The breadth and flexibility of our degree programmes also mean you can keep your options open and choose your specialisation once you have experienced all five disciplines.
- Join us here in Aberdeen if you share our passion for designing solutions that will reduce carbon emissions, protect our environments, create sustainable infrastructure and push the boundaries of robotics and AI in manufacturing, business and healthcare.
What Our Students Say
Entry Requirements
Qualifications
The information below is provided as a guide only and does not guarantee entry to the University of Aberdeen.
General Entry Requirements
- 2024 Entry
-
SQA Highers
Standard: ABBB (Mathematics and Physics or Engineering Science required*)
Applicants who achieve the Standard entry requirements over S4 and S5 will be made either an unconditional or conditional offer of admission.Minimum: BBB (Good performance required in Mathematics and Physics*)
Applicants who achieve our Minimum entry requirements over S4 and S5 are encouraged to apply and will be considered. Good performance in additional Highers / Advanced Highers maybe required in order to receive an offer of admission.Adjusted: BB (Good performance required in Mathematics*)
Applicants who meet one or more of our widening access criteria and who achieve good performance in Maths and one other subject are guaranteed a conditional offer. Good performance in additional Highers / Advanced Highers will be required.* These subjects can be either held at the time of application or be achieved during the appropriate admissions cycle.
More information on our definition of Standard, Minimum and Adjusted entry qualifications.
A LEVELS
Standard: BBB (Good performance required in Mathematics, plus at least one from Physics, Design & Technology, Engineering or Chemistry). Applicants who are predicted to achieve the Standard entry requirements are encouraged to apply and may be made an offer of admission.
Minimum: BBC (Good performance required in Mathematics, plus at least one from Physics, Design & Technology, Engineering or Chemistry). Applicants who are predicted to achieve the Minimum entry requirements are encouraged to apply and will be considered.
Adjusted: BB (Good performance required in Mathematics)
Applicants who meet one or more Widening Participation criteria and who are predicted to achieve a good performance in Mathematics and one other subject may be made an Adjusted offer of entry.More information on our definition of Standard, Minimum and Adjusted entry qualifications.
International Baccalaureat
Minimum of 32 points including Mathematics and Physics at HL (6 or above).
Irish Leaving Certificate
Five subjects at Higher, with 3 at H2 and 2 at H3. H2 or above in Mathematics and H3 or above in Physics required.
FOR CHEMICAL & PETROLEUM ENGINEERING
Please note: for entry to Chemical and Petroleum Engineering an SQA Higher or GCE A Level or equivalent qualification in Chemistry is required for entry to year 1, in addition to the general Engineering requirements.
- 2025 Entry
-
SQA Highers
Standard: BBBB (Mathematics and Physics or Engineering Science required*)
Applicants who achieve the Standard entry requirements over S4 and S5 will be made either an unconditional or conditional offer of admission.Minimum: BBC (Good performance required in Mathematics and Physics*)
Applicants who have achieved BBC at Higher and meet one of the widening participation criteria above are encouraged to apply and are guaranteed an unconditional offer for MA, BSc and BEng degrees.Adjusted: BB (Good performance required in Mathematics*)
Applicants who have achieved BB at Higher, and who meet one of the widening participation criteria above are encouraged to apply and are guaranteed an adjusted conditional offer for MA, BSc and BEng degrees.We would expect to issue a conditional offer asking for one additional C grade at Higher.
* These subjects can be either held at the time of application or be achieved during the appropriate admissions cycle.
Foundation Apprenticeship: One FA is equivalent to a Higher at A. It cannot replace any required subjects.
More information on our definition of Standard, Minimum and Adjusted entry qualifications.
A LEVELS
Standard: BBC*. Applicants who are predicted to achieve the Standard entry requirements are encouraged to apply and may be made an offer of admission.
Minimum: BCC* Applicants who are predicted to achieve the Minimum entry requirements are encouraged to apply and will be considered.
- *NOTE: Good performance required in Mathematics, plus at least one from Physics, Design & Technology, Engineering or Chemistry.
Adjusted: CCC (Good performance required in Mathematics)
Applicants who meet one or more Widening Participation criteria and who are predicted to achieve a good performance in Mathematics and one other subject may be made an Adjusted offer of entry.More information on our definition of Standard, Minimum and Adjusted entry qualifications.
International Baccalaureat
Minimum of 32 points including Mathematics and Physics at HL (6 or above).
Irish Leaving Certificate
Five subjects at Higher, with 3 at H2 and 2 at H3. H2 or above in Mathematics and H3 or above in Physics required.
FOR CHEMICAL & PETROLEUM ENGINEERING
Please note: for entry to Chemical and Petroleum Engineering an SQA Higher or GCE A Level or equivalent qualification in Chemistry is required for entry to year 1, in addition to the general Engineering requirements.
The information displayed in this section shows a shortened summary of our entry requirements. For more information, or for full entry requirements for Engineering degrees, see our detailed entry requirements section.
English Language Requirements
To study for an Undergraduate degree at the University of Aberdeen it is essential that you can speak, understand, read, and write English fluently. The minimum requirements for this degree are as follows:
IELTS Academic:
OVERALL - 6.0 with: Listening - 5.5; Reading - 5.5; Speaking - 5.5; Writing - 6.0
TOEFL iBT:
OVERALL - 78 with: Listening - 17; Reading - 18; Speaking - 20; Writing - 21
PTE Academic:
OVERALL - 59 with: Listening - 59; Reading - 59; Speaking - 59; Writing - 59
Cambridge English B2 First, C1 Advanced or C2 Proficiency:
OVERALL - 169 with: Listening - 162; Reading - 162; Speaking - 162; Writing - 169
Read more about specific English Language requirements here.
International Applicants who do not meet the Entry Requirements
The University of Aberdeen International Study Centre offers preparation programmes for international students who do not meet the direct entry requirements for undergraduate study. Discover your foundation pathway here.
Fee Information
You will be classified as one of the fee categories below.
Fee category | Cost |
---|---|
RUK | £9,250 |
Tuition Fees for 2025/26 Academic Year | |
EU / International students | £24,800 |
Tuition Fees for 2025/26 Academic Year | |
Home Students | £1,820 |
Tuition Fees for 2025/26 Academic Year |
Scholarships and Funding
Students from England, Wales and Northern Ireland, who pay tuition fees may be eligible for specific scholarships allowing them to receive additional funding. These are designed to provide assistance to help students support themselves during their time at Aberdeen.
Additional Fees
- In exceptional circumstances there may be additional fees associated with specialist courses, for example field trips. Any additional fees for a course can be found in our Catalogue of Courses.
- For more information about tuition fees for this programme, including payment plans and our refund policy, please visit our Tuition Fees page.
Funding Opportunities
- We offer around 40 Entrance Scholarships of £1,000- £3,000 per annum, unless otherwise stated, to students with good academic potential while they study for an undergraduate degree at the University.
- 2 Talisman-Sinopec (£2000), and 2 CNR International (£1000) Engineering Scholarships available for students starting an undergraduate Engineering degree in September.
Our Funding Database
View all funding options in our Funding Database.
Careers
Mechanical Engineering graduates are employed in a wide range of industry sectors such as the manufacturing, energy, construction, automotive, aerospace and medical industries. They are involved in the design, manufacturing, installation and commissioning of mechanical systems and new technologies, and in the safety and reliability assessment of engineering structures and components.
Recent graduate job roles have included:
- Design Engineer
- Graduate Mechanical Engineer
- Consultant Engineer
- Project Engineer
- Graduate Sustainability Engineer
- Engineering Manager
- Reliability Engineer
Recent graduates work at companies such as:
- Atkins
- BP
- Babcock
- BrewDog
- Cummins
- Jaguar Landrover
- Loganair
- Nissan
- Reliance Energy
- Subsea 7
- Wood Group
- UK Astronomy Technology Centre
Career Opportunities
- Drilling Engineer
- Field Engineer
- Graduate Mechanical Engineer
- Graduate Process Engineer
Accreditation
Our Mechanical Engineering degrees are accredited by the Engineering Council and are your first step towards achieving Chartered Engineer status with the Institution of Mechanical Engineers (IMechE).
This degree holds accreditation from
What our Alumni Say
Our Experts
- Other Expert
- Dr Nina Nikora
- Programme Coordinator
- Dr Oleksandr Menshykov
Information About Staff Changes
You will be taught by a range of experts including professors, lecturers, teaching fellows and postgraduate tutors. However, these may be subject to change - see our Student Terms and Conditions page.
Features
SPE Student Chapter
Society of Petroleum Engineers, Student Chapter is one of the 230 student chapters around the world and is an excellent opportunity to network with industry and other students from all over the world.
Find out moreStudent Societies
The University is home to a broad range of student societies including professional teams, extra-curricular and subject-focused organisations and purely recreational groups based on a shared interest.
Find out moreDiscover Uni
Discover Uni draws together comparable information in areas students have identified as important in making decisions about what and where to study. You can compare these and other data for different degree programmes in which you are interested.
Get in Touch
Contact Details
- Address
-
Student Recruitment & Admissions
University of Aberdeen
University Office
Regent Walk
Aberdeen
AB24 3FX