Introduction

Virtually every product in modern life has probably been touched in some way by a mechanical engineer.

This programme is studied on campus.

Mechanical engineering is concerned with creative and imaginative use of engineering principles and science to shape the world around us, through the development of new materials, technologies, processes and products. Mechanical engineers design and develop everything that moves or has moving parts, ranging from spacecrafts and aeroplanes to racing cars, from household goods like refrigerators to the small motors that turn a CD in a CD player, from robotic control of machinery to nanotechnologies, from mechanical hearts and artificial limbs to fitness machines, and from oil and gas exploration and production technologies to wind turbines.

Virtually every product in modern life has probably been touched in some way by a Mechanical Engineer. It is not surprising therefore that mechanical engineering is regarded as one of the most diverse engineering disciplines.

If you are interested in the mechanics and dynamics of movement, have aptitude and fascination in how things work, and want to contribute positively to making the life of the human race better and to the development of a sustainable environment, then you should consider mechanical engineering as a career choice.

Degree marketing image

Key Programme Information

At a Glance

Learning Mode
On Campus Learning
Degree Qualification
BEng
Duration
48 months
Study Mode
Full Time
Start Month
September
UCAS Code
H300

What You'll Study

The first two years cover general Engineering, with elements of Chemical, Mechanical, Petroleum and Electrical/Electronics, as well as Civil. In the later years you specialise, following your chosen discipline in greater depth. You do not need to finalise your choice of specialisation until you begin year 3. This is also the point at which a final decision between MEng and BEng must be made. Successful BEng candidates will be offered the chance to change to the MEng.

Year 1

Year 1

Compulsory Courses

Principles of Electronics (EG1008) - 15 Credit Points

The aim of the course is to introduce basic concepts of electrical & electronics within a context of general engineering. The topics covered are kept at an elementary level with the aim of providing the foundational material for subsequent courses at levels 1 and 2. The course adopts the philosophy of application oriented teaching. During each topic the students will be provided with examples of day-to-day devices. Topics covered include dc circuit analysis, electronic amplifiers, digital circuits, optoelectronics, and ac theory.

View detailed information about this course

CAD and Communication in Engineering Practice (EG1010) - 15 Credit Points

The course is designed to introduce the students to different methods of communication in the process of interchanging ideas and information. Oral presentation and writing of technical reports are introduced. The importing data from web-based and library-based sources will be integrated through information retrieval and investigative skills training. Professional ethics are covered on plagiarism, copyright and intellectual property. Engineering drawing skills and knowledge of relevant British and International Standards will be developed through intensive training in the use of computer aided design and modelling package, SolidWorks. Standard drawing formats including 3D depiction of stand alone parts and assemblies are covered.

View detailed information about this course

Fundamentals of Engineering Materials (EG1012) - 15 Credit Points

Engineering design depends on materials being shaped, finished and joined together. Design requirements define the performance required of the materials. What do engineers need to know about materials to choose and use them successfully? They need a perspective of the world of materials. They need understanding of material properties. They need methods and tools to select the right material for the job. This course will help you develop knowledge and skills required for the successful selection and use of engineering materials.

View detailed information about this course

Electronics Design (EE1501) - 15 Credit Points

This course provides an introduction to the design and analysis techniques used within electronic engineering, and to the major active components (diodes and transistors). The course opens with a description of charges, the forces between charges and the concept of electric fields. The second part of the course deals with semiconductor devices, opening with fundamental properties of doped semiconductors.

View detailed information about this course

Engineering Mathematics 1 (EG1504) - 15 Credit Points

The course presents fundamental mathematical ideas useful in the study of Engineering. A major focus of the course is on differential and integral calculus. Applications to Engineering problems involving rates of change and averaging processes are emphasized. Complex numbers are introduced and developed. The course provides the necessary mathematical background for other engineering courses in level 2.

View detailed information about this course

Fundamental Engineering Mechanics (EG1510) - 15 Credit Points

Engineering Mechanics is concerned with the state of rest or motion of objects subject to the action of forces. The topic is divided into two parts: STATICS which considers the equilibrium of objects which are either at rest or move at a constant velocity, and DYNAMICS which deals with the motion and associated forces of accelerating bodies. The former is particularly applied to beams and truss structures. The latter includes a range of applications, such as car suspension systems, motion of a racing car, missiles, vibration isolation systems, and so on.

View detailed information about this course

Professional Skills Part 1 (PD1001)

This course, which is prescribed for level 1 students and optional for level 2 students, is studied entirely online and covers topics relating to careers and employability, equality and diversity and health, safety and wellbeing. During the course you will learn about the Aberdeen Graduate Attributes, how they are relevant to you and the opportunities available to develop your skills and attributes alongside your University studies. You will also gain an understanding of equality and diversity and health, safety and wellbeing issues. Successful completion of this course will be recorded on your Enhanced Transcript as ‘Achieved’ (non-completion will be recorded as ‘Not Achieved’). The course takes approximately 3 hours to complete and can be taken in one sitting, or spread across a number of weeks and it will be available to you throughout the academic year.This course, which is prescribed for level 1 students and optional for level 2 students and above, is studied entirely online and covers topics relating to careers and employability, equality and diversity and health, safety and wellbeing. During the course you will learn about the Aberdeen Graduate Attributes, how they are relevant to you and the opportunities available to develop your skills and attributes alongside your University studies. You will also gain an understanding of equality and diversity and health, safety and wellbeing issues. Successful completion of this course will be recorded on your Enhanced Transcript as ‘Achieved’ (non-completion will be recorded as ‘Not Achieved’). The course takes approximately 3 hours to complete and can be taken in one sitting, or spread across a number of weeks and it will be available to you throughout the academic year

View detailed information about this course

Optional Courses

  • Select a further 30 credit points from courses of choice
Year 2

Year 2

Compulsory Courses

Fluid Mechanics and Thermodynamics (EG2004) - 15 Credit Points

The fluid mechanics section of the course begins with the material properties of fluids. This is followed by studying fluid statics and principles of fluid motion. Bernoulli’s equation is used to explain the relationship between pressure and velocity. The final fluids section introduces the students to incompressible flow in pipelines.

The thermodynamics section presents: the gas laws, including Van Der Waals’ equation; the first law of thermodynamics with work done, heat supply, and the definitions of internal energy and enthalpy. The second law is introduced including entropy through the Carnot cycle.

View detailed information about this course

Process Engineering (EG2011) - 15 Credit Points

A general engineering course that provides insight into the two main conservation principles, mass and energy. Processes are usually described through block diagrams. This language, common to many disciplines in engineering, helps the engineer to look at their processes with an analytical view. Degree of freedom analysis is addressed, emphasising its importance to solve a set of linear equations that model fundamental balances of mass. Practical examples of Energy balances are displayed, bringing Thermodynamics to a practical level. Heat Transfer is introduced. Process control is introduced, explaining basic control techniques and concepts, i.e sensors, feedback, control loops and PID controllers.

View detailed information about this course

Engineering Mathematics 2 (EG2012) - 15 Credit Points

This course follows Engineering Mathematics 1 in introducing all the mathematical objects and techniques needed by engineers. It has three parts:

  • Matrices: definitions, operations, inverse and determinant; application to systems of linear equations.
  • Ordinary differential equations: 1st order (linear and separable), 2nd order with constant coefficients, forced osciallations and resonance.
  • Functions of two variables: partial derivatives and extrema, the chain rule, the heat equation and the wave equation.

View detailed information about this course

Solids and Structures (EA2502) - 15 Credit Points

This course provides students with the opportunity to refresh and extend their knowledge to analyse the mechanical behaviour of engineering materials and structures. In particular, mechanical properties of materials, and 2D and 3D stresses and strains are examined, the effects of internal imperfections on the performance of materials under loading, brittle fracture, fatigue and non-destructive testing are discussed. The structural analysis of beams and columns, deflection and buckling, as well as design applications are also considered in the course.

View detailed information about this course

Design and Computing in Engineering Practice (EG2501) - 15 Credit Points

A general engineering course that provides an insight into the principles of engineering design process, computer programming in MATLAB and its application in parametric study and basic design optimisation, environmental ethics and sustainability in the context of design, and Computer Aided Design (CAD) using Solidworks. The course also includes hands-on exercises on the manufacture of simple parts using a variety of machine tools and joining processes.

View detailed information about this course

Electrical and Mechanical Systems (EG2503) - 15 Credit Points

This course provides students with an integrated development of methods for modelling, analysing and designing systems comprising electrical and mechanical components. In doing so it intends to emphasise to the students the similarity in behaviour between electrical and mechanical systems. The course aims to give an introduction to both electrical machines, circuit and systems, transformers, and similar mechanical systems like gearbox, vibrating system and principles of dynamics, and thus provide the foundation material for several courses at level 3 .

View detailed information about this course

Optional Courses

  • Select a further 30 credit points from courses of choice
Year 3

Year 3

You have the opportunity to study from a range of courses leading to specialisation in your chosen discipline. The opportunity exists to study a European language to support this study. Formal courses continue to develop your specialist interests.

Compulsory Courses

Engineering Analysis and Methods 1 (EG3007) - 15 Credit Points

Modern engineering analysis relies on a wide range of analytical mathematical methods and computational techniques in order to solve a wide range of problems. The aim of this course is to equip students with the necessary skills to quantitatively investigate engineering problems. Examples applying the methods taught to practical situations from across the full range of engineering disciplines will feature heavily in the course.

View detailed information about this course

Stress Analysis A (EM3015) - 15 Credit Points

One of the roles of an engineer is to ensure that engineering components perform in service as intended and do not fracture or break into pieces. However, we know that sometimes engineering components do fail in service. Course examines how we determine the magnitude of stresses and level of deformation in engineering components and how these are used to appropriately select the material and dimensions for such component in order to avoid failure. Focus is on using stress analysis to design against failure, and therefore enable students to acquire some of the fundamental knowledge and skills required for engineering design.

View detailed information about this course

Fluid Mechanics (EM3019) - 15 Credit Points

The course begins with dimensional analysis and the concept of dynamic similarity applied to fluid flow phenomena. This is followed by sections on the energy and momentum equations applied to a range of problems in civil, mechanical, chemical and petroleum engineering, including steady flow in pipes, design of pump-pipeline systems, cavitation, forces on bends, nozzles and solid bodies, turbomachinery and propellor theory. A section on unsteady flow applies inertia and water hammer theory to the calculation of pressure surge in pipes. The final section deals with flow through porous media such as flow through soils and rocks.

View detailed information about this course

Engineering Materials (EM3028) - 15 Credit Points

The course focuses, initially, on the major groups of solid materials – metals, ceramics, polymers, and provides an introduction to materials selection. Strengthening mechanisms in these systems and the relationship between microstructure and mechanical properties are highlighted. The main failure and degradation processes of materials in service, fracture, fatigue, creep and corrosion, are considered. The major welding and adhesive bonding processes are introduced, and structural integrity of welded joints is examined. Finally, the course gives a comprehensive introduction to composite materials and motivation for their use in current structural applications. Manufacturing of different types of composites is reviewed.

View detailed information about this course

Mechanics of Structures (EA3518) - 15 Credit Points

The major topic of this course is an introduction to modern methods of elastic structural analysis. In this topic, direct, energy and matrix methods are jointly used to solve, initially, problems of the deformation of simple beams. The theorem of virtual work is introduced in the context of beams and frameworks.

The rigid-plastic analysis of beams is then introduced along with the upper bound theorem and their importance to engineering design.

View detailed information about this course

Project and Safety Management (EG3599) - 10 Credit Points

To course aims to provide students with an awareness of purpose, principals, fundamental concepts and strategies of safety and project management.

View detailed information about this course

Dynamics 1 (EM3511) - 15 Credit Points

This course introduces the theory of dynamics and the vibration of single and multi-degree of freedom systems, and dynamics of rotating and reciprocating machinery.

View detailed information about this course

Engineering Thermodynamics (EM3521) - 10 Credit Points

The course begins introducing thermodynamic properties and reviewing first and second laws. The material is then taken forward into application in a focused module on production of power from heat which includes: steam power plants; internal-combustion and gas-turbine engines. This is followed by a module on refrigeration and liquefaction. The course continues with a detailed discussion of the applications of thermodynamics to flow processes including: duct flow of compressible fluids in pipes and nozzles; turbines; compression processes. The course concludes with a module on psychrometry which includes: humidity data for air-water systems; humidification & dehumidification systems.

View detailed information about this course

Design of Mechanical Elements (EM3522) - 10 Credit Points

Aimed at students interested in mechanical engineering and aims to equip students with the skills and knowledge required to take a design requirement/concept to a fully implemented product. It will provide an overview of a multi-stage design methodology followed by procedures for the detailed design of various mechanical elements including gears, shaft and bearings. These procedures will include design to resist fatigue failure and will be taught using an example product. The course will include aspects of sustainability and choice of method for manufacture. Assessed through a series of group design exercises.

View detailed information about this course

Year 4

Year 4

There are two options of study in year 4. Three compulsory courses are studied and students can then choose between a range of different project options.

Compulsory Courses

Fluid Dynamics (EM40JJ) - 10 Credit Points

The course begins with consideration of boundary layer development over a flat plate and curved surfaces, leading to boundary layer separation and forces on immersed bodies. This is followed by study of water wave theory with particular application to coastal and offshore engineering. These topics are also part of the EG40JF Civil Engineering Hydraulics course. The second part of the course concentrates on compressible flow. Using the fundamental conservation equations, the characteristics of converging-diverging nozzles and accelerating supersonic flows are examined. Plane and oblique shock waves, Prandtl-Meyer flow and Navier-Stokes equations are then introduced.

View detailed information about this course

Sensing and Instrumentation (EE4017) - 10 Credit Points

The course introduces sensing and instrumentation for various engineering applications. Major part of the course will consider case studies of sensing and instrumentation for various engineering applications and is suitable for all engineering and non-engineering students to learn about sensing and instrumentation.

View detailed information about this course

Heat and Momentum Transfer (EM40JN) - 10 Credit Points

The course focuses on applied momentum and heat transport in engineering problems. It demonstrates how fundamental design equations can be derived for a wide range of real engineering problems (e.g. nuclear fuel rods, radiation shielding, electrical heaters etc). The course makes it clear that engineering is the art of applying mathematics to the real world and develops the tools required to tackle a wide range of engineering challenges.

The analytical results of transport phenomena are demonstrated in simple systems before discussing more complex systems, such as boiling and condensation, which require the use of semi-empirical correlations to solve.

View detailed information about this course

Optional Courses

Option 1:

  • BEng Individual Project (EG4014)
  • Nonlinear Mechanics (EG4529)
  • Group Design Project (BEng) (EG4578)
  • Select a further 30 credit points from courses of choice

Option 2:

  • Engineering Project Abroad (BEng) (EG4011)
  • Select a further 30 credit points from courses of choice in the first half-session
BEng Individual Project (EG4014) - 30 Credit Points

To provide the student with the opportunity of pursuing a substantial and realistic exercise in the practice of engineering at or near a professional level, and to further enhance the student's critical and communication skills. The project will usually be carried out at the University of Aberdeen but may be carried out at industry or other research location.

View detailed information about this course

Group Design Project (BEng) (EG4578) - 15 Credit Points

This course is a concentrated design and reporting exercise which requires application of project management and team liaison skills in addition to technical design ability. Specific exercises will include interdisciplinary aspects and will relate to design requirements arising from the professional activities of the School of Engineering or its industrial contacts. Written and oral presentations form part of the course.

View detailed information about this course

Nonlinear Mechanics (EM4529) - 15 Credit Points

This course provides students with the opportunity to familiarise themselves with the concept of nonlinearity and nonlinear behaviour of engineering systems, structures and materials. In particular, fundamental principles of analytical and computational methods used in nonlinear mechanics are examined, simple nonlinear engineering systems and nonlinear fluid flows (e.g., Newtonian and non−Newtonian flows for various Reynolds numbers) are modelled and analysed using Computational Fluid Dynamics package and Finite Elements software.

View detailed information about this course

Engineering Project Abroad (BEng) (EG4011) - 60 Credit Points

The course is designed to provide the student with the opportunity to carry out a project in an approved European institution by pursuing a substantial and realistic exercise in the practice of engineering at or near a professional level, and to further enhance the student's critical and communication skills.

View detailed information about this course

Course Availability

We will endeavour to make all course options available; however, these may be subject to timetabling and other constraints. Please see our InfoHub pages for further information.

How You'll Study

Learning Methods

  • Group Projects
  • Individual Projects
  • Lab Work
  • Lectures
  • Tutorials

Assessment Methods

Students are assessed by any combination of three assessment methods:

  • coursework such as essays and reports completed throughout the course;
  • practical assessments of the skills and competencies learnt on the course; and
  • written examinations at the end of each course.

The exact mix of these methods differs between subject areas, year of study and individual courses.

Honours projects are typically assessed on the basis of a written dissertation.

Why Study Engineering (Mechanical)?

  • The first two years of our engineering programmes cover general engineering. This means you develop vital knowledge in all engineering areas – making you far more adaptable in employment.
  • We deliver teaching in world-class facilities, including laboratories dedicated to particular areas of work such as satellite communications, computer aided design, electrical machines, materials testing, laser welding, hydraulics and fluids, large structures and geotechnics.
  • The School has produced thousands of world-class graduates over the decades, many who have progressed into Managing Director and Chief Executive roles in the oil and gas and wider energy industries.
  • Across a number of our programmes, we work closely with colleagues across geology, chemistry and business disciplines to ensure the teaching is fit-for purpose.
  • We are well connected with local, national and international industry, particularly in the oil/gas/energy industry where you get the chance to experience real-life industry challenges and projects, through guest lectures, company visits and networking events.
  • All of our degrees have been accredited by the relevant professional engineering institutions, providing you with your first step into becoming a chartered engineer. Undergraduate Engineers intending to follow a professional engineering career should consider student membership of the appropriate Engineering Institution.
  • Our award winning Society of Petroleum Engineers Student Chapter is one of the 230 student chapters around the world. We build strong relationships with members and non-members alike, and help you gain insight into the oil and gas industry.
  • TAU Racing was established in 2007 by a group of undergraduate engineers of various disciplines. The team’s goal each year is to design and build a single seat racing car to compete at Silverstone in the Formula Student competition.
  • Hands-on experience of laboratory experiments and of industry-standard software is used to enhance your learning. Group design exercises based on real case field data and supervised by practising professionals from industry prepares you for work.
  • Opportunities exist for industry sponsored scholarships and bursaries, final year individual projects undertaken with industry, and study abroad opportunities.

Entry Requirements

Qualifications

4 Highers at ABBB - AB required in Mathematics and in Physics/Engineering Science. If applicant presents with H in Engineering Science instead of Physics, Mathematics must be A grade. S at grades 1, 2, or 3, or National 5 at grades A, B or C in English.

3 A Levels at BBB, B in Mathematics and Physics or a B in Design and Technology or a B in Engineering. GCSE English at C.

Further detailed entry requirements for Engineering degrees.

English Language Requirements

To study for a degree at the University of Aberdeen it is essential that you can speak, understand, read, and write English fluently. Read more about specific English Language requirements here.

Fees and Funding

You will be classified as one of the fee categories below.

Fee Waiver

For international students (all non-EU students) entering in 2017/18, the 2017/18 tuition fee rate will apply to all years of study; however, most international students will be eligible for a fee waiver in their final year via the International Undergraduate Scholarship.

Most RUK students (England, Wales and Northern Ireland) on a four year honours degree will be eligible for a full-fees waiver in their final year. Scholarships and other sources of funding are also available.

Fee information
Fee category Cost
Home / EU £1,820
All Students
RUK £9,250
Students Admitted in 2018/19 Academic Year
International Students £18,900
Students Admitted in 2018/19 Academic Year

Additional Fees

  • In exceptional circumstances there may be additional fees associated with specialist courses, for example field trips. Any additional fees for a course can be found in our Catalogue of Courses.
  • For more information about tuition fees for this programme, including payment plans and our refund policy, please visit our InfoHub Tuition Fees page.

Funding Opportunities

  • We offer around 40 Entrance Scholarships of £1,000- £3,000 per annum, unless otherwise stated, to students with good academic potential while they study for an undergraduate degree at the University.
  • 2 Talisman-Sinopec (£2000), and 2 CNR International (£1000) Engineering Scholarships available for students starting an undergraduate Engineering degree in September.

Our Funding Database

View all funding options in our Funding Database.

Undergraduate Open Day

Our next Open Day will be on

Find out More

Careers

Mechanical Engineering graduates are employed in a wide range of industry sectors such as manufacturing, power, oil and gas, construction, automotive, aerospace and medical industries. They are involved in the design, manufacturing, installation and commissioning of mechanical systems and new technologies, and in the safety and reliability assessment of engineering structures and components.

Our graduates have gone onto work for a number of global companies, including:

  • Atkins
  • Augmentias Offshore and Maritime
  • Bowmer and Kirkland
  • CH2M HILL
  • DNV GL
  • Fairhurst
  • Jacobs Engineering Group
  • Stewart Milne Timber Systems
  • Subsea7
  • Aker Solutions
  • Chevron
  • Wood Group

Career Opportunities

  • Drilling Engineer
  • Field Engineer
  • Graduate Mechanical Engineer
  • Graduate Process Engineer

Accreditation

According to your choice of curriculum, our MEng Honours degree is an accredited five-year Honours programme satisfying the educational base for a Chartered Engineer (CEng) by the Institution of Civil Engineers, the Institution of Chemical Engineers, the Institution of Structural Engineers, the Institution of Engineering and Technology, Energy Institute or by the Institution of Mechanical Engineers. The BEng Honours degree is an accredited four year Honours degree programme partially satisfying the educational base for a Chartered Engineer (CEng) while it fully meets the educational base for Incorporated Engineer (IEng) registration.

This degree holds accreditation from

What our Alumni Say

  • Hiba Ayaz
    Hiba Ayaz, at

    Hiba Ayaz

    Graduated
    I really, really enjoyed my time here, especially graduation day, when you think about all the memories you’ve had and you definitely grow as a person here, the kind of experiences you have, whether that be in class or outside.

Our Experts

Other Experts
Dr Nina Nikora
Programme Coordinator
Dr Oleksandr Menshykov

Information About Staff Changes

You will be taught by a range of experts including professors, lecturers, teaching fellows and postgraduate tutors. Staff changes will occur from time to time; please see our InfoHub pages for further information.

Image for useful fact about this Degree

Top 5 in UK for Employability

1st  in Scotland 3rd  in the UK for graduate engineering employability (Guardian League Tables, 2016/17)

Features

Image for TAU Formula Racing
TAU Formula Racing

TAU Formula Racing

TAU (Team Aberdeen University) Racing was established by a group of undergraduate engineers at the University. The goal each year is to design and build a single seat racing car to compete at Silverstone in the Formula Student competition.

Find out more
Image for SPE Student Chapter
SPE Student Chapter

SPE Student Chapter

Society of Petroleum Engineers, Student Chapter is one of the 230 student chapters around the world. Currently, our chapter is managed by 6 elected committee members and is advised by Dr. Akisanya. We have more than 150 members.

Find out more
Image for IMechE Young Members' Panel (YMP)
IMechE Young Members' Panel (YMP)

IMechE Young Members' Panel (YMP)

AYMP aims to continue to build the reputation of the institution and the panel by introducing Young Members to the professional activities of IMechE, and in doing so encouraging them to stay connected and committed throughout their careers.

Find out more
Image for useful fact about this Degree

Scotland's number 1 School of General Engineering

Scotland's number 1 School of General Engineering, 10th in the UK

Key Information Set (KIS)

Unistats draws together comparable information in areas students have identified as important in making decisions about what and where to study. The core information it contains is called the Key Information Set.

You can compare these and other data for different degree programmes in which you are interested.

Get in Touch

Contact Details

Address
Student Recruitment & Admissions Service
University of Aberdeen
University Office
Regent Walk
Aberdeen
AB24 3FX