Mechanical Engineering with Management, MEng

In this section
Mechanical Engineering with Management, MEng

Introduction

The very best engineers working in industry not only have exceptional engineering knowledge and skills but they also have a solid grounding in commercial decision making, finance, economics and planning.

Ranked 12th UK, 1st in Scotland for General Engineering (Complete University Guide 2024)

Study Information

At a Glance

Learning Mode
On Campus Learning
Degree Qualification
MEng
Duration
60 months
Study Mode
Full Time
Start Month
September
UCAS Code
H3N2

The main difference between this programme and the standard MEng Mechanical Engineering degree comes in year 4.

Where the standard MEng programme offers two year 4 options, this programme has one option for year 4 and it contains the 15 credit "Business and Management Essentials" course. This particular course is designed with engineers in mind and aims to provide students with a broad ranging introduction to wide variety business and management topics, which should enable them to perform more effectively as graduate engineers and more senior roles were they are likely to have broader responsibilities.

There are a number of examples where our engineering graduates have moved into MD and CEO roles within the oil and gas and other industry sectors. This degree programme is ideal for those individuals that wish to strengthen their understanding of key business principles.

Aberdeen Global Scholarship

The University of Aberdeen is delighted to offer eligible self-funded international on-campus undergraduate students a £6,000 scholarship for every year of their programme.

View the Aberdeen Global Scholarship

What You'll Study

The first two years cover general Engineering, with elements of Chemical, Mechanical, Petroleum and Electrical/Electronics, as well as Civil. In the later years you specialise, following your chosen discipline in greater depth. You do not need to finalise your choice of specialisation until you begin third year.

It is possible to move between MEng and BEng and this can be accomplished at any point until the second half session of fourth year. Successful BEng candidates will be offered the chance to change to the MEng and there is no quota, meaning that if grade requirements are met that transfer is guaranteed.

Year 1

Compulsory Courses

  • EG1513 Circuit Analysis and Design
Getting Started at the University of Aberdeen (PD1002)

This course, which is prescribed for level 1 undergraduate students and articulating students who are in their first year at the University, is studied entirely online, is studied entirely online, takes approximately 2-3 hours to complete and can be taken in one sitting, or spread across the first 4 weeks of term.

Topics include University orientation overview, equality & diversity, MySkills, health, safety and cyber security, and academic integrity.Successful completion of this course will be recorded on your Transcript as ‘Achieved’.

Principles of Electronics (EG1008)

15 Credit Points

The aim of the course is to introduce basic concepts of electrical & electronics within a context of general engineering. The topics covered are kept at an elementary level with the aim of providing the foundational material for subsequent courses at levels 1 and 2. The course adopts the philosophy of application oriented teaching. During each topic the students will be provided with examples of day-to-day devices. Topics covered include dc circuit analysis, electronic amplifiers, digital circuits, optoelectronics, and ac theory.

CAD and Communication in Engineering Practice (EG1010)

15 Credit Points

The course is designed to introduce the students to different methods of communication in the process of interchanging ideas and information. Oral presentation and writing of technical reports are introduced. The importing data from web-based and library-based sources will be integrated through information retrieval and investigative skills training. Professional ethics are covered on plagiarism, copyright and intellectual property. Engineering drawing skills and knowledge of relevant British and International Standards will be developed through intensive training in the use of computer aided design and modelling package, SolidWorks. Standard drawing formats including 3D depiction of stand alone parts and assemblies are covered.

Fundamentals of Engineering Materials (EG1012)

15 Credit Points

Engineering design depends on materials being shaped, finished and joined together. Design requirements define the performance required of the materials. What do engineers need to know about materials to choose and use them successfully? They need a perspective of the world of materials. They need understanding of material properties. They need methods and tools to select the right material for the job. This course will help you develop knowledge and skills required for the successful selection and use of engineering materials.

Engineering Mathematics 1 (EG1504)

15 Credit Points

The course presents fundamental mathematical ideas useful in the study of Engineering. A major focus of the course is on differential and integral calculus. Applications to Engineering problems involving rates of change and averaging processes are emphasized. Complex numbers are introduced and developed. The course provides the necessary mathematical background for other engineering courses in level 2.

Fundamental Engineering Mechanics (EG1510)

15 Credit Points

Engineering Mechanics is concerned with the state of rest or motion of objects subject to the action of forces. The topic is divided into two parts: STATICS which considers the equilibrium of objects which are either at rest or move at a constant velocity, and DYNAMICS which deals with the motion and associated forces of accelerating bodies. The former is particularly applied to beams and truss structures. The latter includes a range of applications, such as car suspension systems, motion of a racing car, missiles, vibration isolation systems, and so on.

Optional Courses

Plus 30 credit points from courses of choice at Levels 1 or 2

Year 2

Compulsory Courses

  • EG2513 Solids and Structures
Fluid Mechanics and Thermodynamics (EG2004)

15 Credit Points

The fluid mechanics section of the course begins with the material properties of fluids. This is followed by studying fluid statics and principles of fluid motion. Bernoulli’s equation is used to explain the relationship between pressure and velocity. The final fluids section introduces the students to incompressible flow in pipelines.

The thermodynamics section presents: the gas laws, including Van Der Waals’ equation; the first law of thermodynamics with work done, heat supply, and the definitions of internal energy and enthalpy. The second law is introduced including entropy through the Carnot cycle.

Process Engineering (EG2011)

15 Credit Points

A general engineering course that provides insight into the two main conservation principles, mass and energy. Processes are usually described through block diagrams. This language, common to many disciplines in engineering, helps the engineer to look at their processes with an analytical view. Degree of freedom analysis is addressed, emphasising its importance to solve a set of linear equations that model fundamental balances of mass. Practical examples of Energy balances are displayed, bringing Thermodynamics to a practical level. Heat Transfer is introduced. Process control is introduced, explaining basic control techniques and concepts, i.e sensors, feedback, control loops and PID controllers.

Engineering Mathematics 2 (EG2012)

15 Credit Points

This course follows Engineering Mathematics 1 in introducing all the mathematical objects and techniques needed by engineers. It has three parts:

  • Matrices: definitions, operations, inverse and determinant; application to systems of linear equations.
  • Ordinary differential equations: 1st order (linear and separable), 2nd order with constant coefficients, forced oscillations and resonance.
  • Functions of two variables: partial derivatives and extrema, the chain rule, the heat equation and the wave equation.
Design and Computing in Engineering Practice (EG2501)

15 Credit Points

A general engineering course that provides an insight into the principles of engineering design process, computer programming in MATLAB and its application in parametric study and basic design optimisation, environmental ethics and sustainability in the context of design, and Computer Aided Design (CAD) using Solidworks. The course also includes hands-on exercises on the manufacture of simple parts using a variety of machine tools and joining processes.

Electrical and Mechanical Systems (EG2503)

15 Credit Points

This course provides students with an integrated development of methods for modelling, analysing and designing systems comprising electrical and mechanical components. In doing so it intends to emphasise to the students the similarity in behaviour between electrical and mechanical systems. The course aims to give an introduction to both electrical machines, circuit and systems, transformers, and similar mechanical systems like gearbox, vibrating system and principles of dynamics, and thus provide the foundation material for several courses at level 3 .

Optional Courses

Plus 30 credit points from courses of choice at Levels 1 or 2

Year 3

Compulsory Courses

  • EG 3505 Engineer in Society
  • EM3519 Fluid Mechanics
Engineering Analysis and Methods 1a (EG3007)

15 Credit Points

Modern engineering analysis relies on a wide range of analytical mathematical methods and computational techniques in order to solve a wide range of problems. The aim of this course is to equip students with the necessary skills to quantitatively investigate engineering problems. Examples applying the methods taught to practical situations from across the full range of engineering disciplines will feature heavily in the course.

Stress Analysis A (EM3015)

15 Credit Points

One of the roles of an engineer is to ensure that engineering components perform in service as intended and do not fracture or break into pieces. However, we know that sometimes engineering components do fail in service. Course examines how we determine the magnitude of stresses and level of deformation in engineering components and how these are used to appropriately select the material and dimensions for such component in order to avoid failure. Focus is on using stress analysis to design against failure, and therefore enable students to acquire some of the fundamental knowledge and skills required for engineering design.

Engineering Materials (EM3028)

15 Credit Points

The course focuses, initially, on the major groups of solid materials – metals, ceramics, polymers, and provides an introduction to materials selection. Strengthening mechanisms in these systems and the relationship between microstructure and mechanical properties are highlighted. The main failure and degradation processes of materials in service, fracture, fatigue, creep and corrosion, are considered. The major welding and adhesive bonding processes are introduced, and structural integrity of welded joints is examined. Finally, the course gives a comprehensive introduction to composite materials and motivation for their use in current structural applications. Manufacturing of different types of composites is reviewed.

Mechanics of Structures (EA3518)

15 Credit Points

The major topic of this course is an introduction to modern methods of elastic structural analysis. In this topic, direct, energy and matrix methods are jointly used to solve, initially, problems of the deformation of simple beams. The theorem of virtual work is introduced in the context of beams and frameworks.

The rigid-plastic analysis of beams is then introduced along with the upper bound theorem and their importance to engineering design.

Dynamics 1 (EM3511)

15 Credit Points

This course introduces the theory of dynamics and the vibration of single and multi-degree of freedom systems, and dynamics of rotating and reciprocating machinery.

Engineering Thermodynamics (EM3521)

10 Credit Points

The course begins introducing thermodynamic properties and reviewing first and second laws. The material is then taken forward into application in a focused module on production of power from heat which includes: steam power plants; internal-combustion and gas-turbine engines. This is followed by a module on refrigeration and liquefaction. The course continues with a detailed discussion of the applications of thermodynamics to flow processes including: duct flow of compressible fluids in pipes and nozzles; turbines; compression processes. The course concludes with a module on psychrometry which includes: humidity data for air-water systems; humidification & dehumidification systems.

Design of Mechanical Elements (EM3522)

10 Credit Points

Aimed at students interested in mechanical engineering and aims to equip students with the skills and knowledge required to take a design requirement/concept to a fully implemented product. It will provide an overview of a multi-stage design methodology followed by procedures for the detailed design of various mechanical elements including gears, shaft and bearings. These procedures will include design to resist fatigue failure and will be taught using an example product. The course will include aspects of sustainability and choice of method for manufacture. Assessed through a series of group design exercises.

Year 4

Compulsory Courses

  • EG4030 Business and Management Essentials
  • EM 4011 Fluid Dynamics
  • EM 4012 Heat and Momentum Transfer
  • EM 4013 Nonlinear Solid Mechanics

Optional Courses

Select one of:

  • Individual Project (EG45PE)
  • Industrial Individual Project (EG45PF)
  • Individual Project Abroad (EG45PA)
Individual Project Abroad (BEng) (EG45PA)

45 Credit Points

The course is designed to provide students with the opportunity to carry out a project in an approved European institution by pursuing a substantial and realistic exercise in the practice of engineering at or near a professional level, and to further enhance the student's critical and communication skills.

Year 5

Compulsory Courses

Computational Fluid Dynamics (EG501V)

15 Credit Points

The course aims to provide understanding of main principles and techniques underpinning computational fluid dynamics (CFD) combining numerical methods with practical experience using appropriate software. The course develops a foundation for understanding, developing and analysing successful simulations of fluid flows applicable to a broad range of applications.

The Engineer in Society (EG501W)

15 Credit Points

Students will examine the societal grand challenges of water, food, medicine and energy (electricity and heat) to thread together the themes of environment, sustainability and ethics.

The course also aims to provide graduates with a versatile framework for evaluating and developing business models which should prove invaluable for both potential entrepreneurs and future senior executives.

MEng Group Design (EG5565)

30 Credit Points

Real-life contemporary engineering projects and challenges invariably require inputs from, and collaboration amongst, multiple disciplines. Furthermore, legal and economic aspects, as well as safety, team work and project management must also be successfully navigated through. This course enables students to immerse themselves in a realistic, multidisciplinary, multifaceted and complex team design project that will draw on their previous specialist learning and also enable gaining and practicing new skills of direct relevance to their professional career.

Engineering Risk and Reliability Analysis (EG55P6)

15 Credit Points

The world is full of uncertainties and there is a level of risk in every human activity, including engineering. Many industries require an engineer to manage significant risks and design for high reliability, such as oil and gas, subsea, nuclear, aviation and large civil projects (e.g. bridges and dams). To meet these engineering challenges and make rational decisions in the presence of uncertainty, this course will introduce students to methods and tools used by engineers to analysis risk and reliability.

Advanced Composite Materials (EM501Q)

15 Credit Points

Advanced materials underpin many industry sectors and are viewed as one of the key enabling technologies that can help address environmental, economic and social challenges the society is facing. Lightweight materials such as composites applied to vehicles, structures and devices can help reduce energy consumption and emissions, and increase energy efficiency. The aim of this course is introduce students to the mechanical behaviour of composite materials and the design of structures made of composites.

Optional Courses

First half-session options - choose one of the following

  • Numerical Simulation of Waves (EG501S)
  • Fire and Explosion Engineering (EG5071)

Second half-session options - choose one of the following

  • Mathematical Optimisation (EG551T)
  • Risers Systems and Hydrodynamics (EG55F9)
  • Pipelines and Soil Mechanics (EG55F2)
  • Finite Element Methods (EG55M1)
Fire and Explosion Engineering (EG5071)

15 Credit Points

Hydrocarbon fires and explosions produce extreme loading on engineering components. Structural steels lose their strength and stiffness well below the temperatures associated with hydrocarbon fires. Safety-critical elements must be designed to withstand both these temperatures and the blast overpressures that result from hydrocarbon explosions. Simple models are used to assess the loading that results from fires and explosions. Structural elements are analysed to illustrate the design procedures that are required to prevent escalation and to design against major accident scenarios.

Finite Element Methods (EG55M1)

15 Credit Points

The background to the finite element method and its use in various industrial applications is explained in this course. As well as the modelling of linear static and dynamic problems, the modelling of material and geometric non-linearity is an important aspect of the course. Coursework assignments will be based on the student edition of ABAQUS which is supplied with the Course Textbook which students are required to purchase.

Mathematical Optimisation (EG551T)

15 Credit Points

Ever wondered how Excel is able to draw an optimal line through a set of points? This course looks at how typical engineering problems that cannot be described mathematically (or are difficult to do so) can be solved so that the optimal solution is found. The course contains a range of examples to show how the techniques are applied to real world problems in different engineering disciplines. The course will show how to develop computational algorithms from scratch, with a fundamental understanding of how the algorithms function, both mathematically and then in real time on a computer.

Pipelines and Soil Mechanics (EG55F2)

15 Credit Points

Offshore production of oil and gas requires transportation of the oil and gas from where it is produced to shipping vessels, storage tanks or refinery. The transportation is done using pipelines which are installed on the seabed. This course examines the engineering and scientific concepts that underpin the selection of the material and size of such pipelines as well as safe installation and operation. The environmental impact and the role played by the seabed profile are also discussed. Contribution from industry-based practicing engineers is used to inform students of current practices and technologies in subsea pipelines.

Riser Systems and Hydrodynamics (EG55F9)

15 Credit Points

The course provides students with detailed knowledge of risers systems design considerations. Typical riser systems including flexible, steel catenary, hybrid and top tensioned riser systems are covered. The ocean environmental hydrodynamics and interactions between vessel, mooring and riser systems are also considered.

We will endeavour to make all course options available. However, these may be subject to change - see our Student Terms and Conditions page. In exceptional circumstances there may be additional fees associated with specialist courses, for example field trips.

How You'll Study

Learning Methods

  • Field Work
  • Group Projects
  • Individual Projects
  • Lectures
  • Research
  • Tutorials

Assessment Methods

Students are assessed by any combination of three assessment methods:

  • coursework such as essays and reports completed throughout the course;
  • practical assessments of the skills and competencies they learn on the course; and
  • written examinations at the end of each course.

The exact mix of these methods differs between subject areas, years of study and individual courses.

Honours projects are typically assessed on the basis of a written dissertation.

Why Study Mechanical Engineering with Management?

Why Mechanical Engineering

  • The world needs mechanical engineers to help tackle some of the biggest issues we face, such as renewable energy, sustainable transport and food security.
  • Our degrees are accredited by the Engineering Council and are your first step towards achieving Chartered Engineer status with the Institution of Mechanical Engineers (IMechE).
  • The School of Engineering has strong links with industry, including local, national and international organisations, who support our teaching through guest lectures and seminars, placement opportunities, site visits and scholarships.
  • There are a number of societies directly related to mechanical engineering, where you can meet fellow students and develop your interests and new skills, including TAU Racing, PrototAU and the Aerospace Engineering Society.
  • Our interdisciplinary approach means students gain experience in each engineering discipline, making them highly sought-after by employers. This flexibility also means you choose your specialisation once you have experienced all five disciplines.

Entry Requirements

Qualifications

The information below is provided as a guide only and does not guarantee entry to the University of Aberdeen.


General Entry Requirements

2024 Entry

SQA Highers
Standard: AABB (Mathematics and Physics or Engineering Science required*)
Applicants who achieve the Standard entry requirements over S4 and S5 will be made either an unconditional or conditional offer of admission.

A Levels
Standard: ABB (AB required in Mathematics, plus at least one from Physics, Design & Technology, Engineering or Chemistry). Applicants who are predicted to achieve the Standard entry requirements are encouraged to apply and may be made a conditional offer of admission.

International Baccalaureate:

Minimum of 34 points including Mathematics and Physics at HL (6 or above)

Irish Leaving Certificate:

Five subjects at Higher, with 4 at H2 and 1 at H3. H2 or above in Mathematics and H3 or above in Physics required.

* FOR CHEMICAL OR PETROLEUM ENGINEERING: Please note: For entry to Chemical or Petroleum Engineering an SQA Higher or GCE A Level or equivalent qualification in Chemistry is required for entry to year 1, in addition to the general Engineering requirements.

2025 Entry

SQA Highers
Standard: AABB (Mathematics and Physics or Engineering Science required*)
Applicants who achieve the Standard entry requirements over S4 and S5 will be made either an unconditional or conditional offer of admission.

A Levels
Standard: ABB (AB required in Mathematics, plus at least one from Physics, Design & Technology, Engineering or Chemistry). Applicants who are predicted to achieve the Standard entry requirements are encouraged to apply and may be made a conditional offer of admission.

International Baccalaureate:

Minimum of 34 points including Mathematics and Physics at HL (6 or above)

Irish Leaving Certificate:

Five subjects at Higher, with 4 at H2 and 1 at H3. H2 or above in Mathematics and H3 or above in Physics required.

* FOR CHEMICAL OR PETROLEUM ENGINEERING: Please note: For entry to Chemical or Petroleum Engineering an SQA Higher or GCE A Level or equivalent qualification in Chemistry is required for entry to year 1, in addition to the general Engineering requirements.

The information displayed in this section shows a shortened summary of our entry requirements. For more information, or for full entry requirements for Engineering degrees, see our detailed entry requirements section.


English Language Requirements

To study for an Undergraduate degree at the University of Aberdeen it is essential that you can speak, understand, read, and write English fluently. The minimum requirements for this degree are as follows:

IELTS Academic:

OVERALL - 6.0 with: Listening - 5.5; Reading - 5.5; Speaking - 5.5; Writing - 6.0

TOEFL iBT:

OVERALL - 78 with: Listening - 17; Reading - 18; Speaking - 20; Writing - 21

PTE Academic:

OVERALL - 59 with: Listening - 59; Reading - 59; Speaking - 59; Writing - 59

Cambridge English B2 First, C1 Advanced or C2 Proficiency:

OVERALL - 169 with: Listening - 162; Reading - 162; Speaking - 162; Writing - 169

Read more about specific English Language requirements here.

Fees and Funding

You will be classified as one of the fee categories below.

Fee information
Fee category Cost
RUK £9,535
Tuition Fees for 2025/26 Academic Year
EU / International students £24,800
Tuition Fees for 2025/26 Academic Year
Self-funded international students commencing eligible undergraduate programmes in 2025/26 will receive a £6,000 tuition waiver for every year of their programme - See full terms and conditions
Home Students £1,820
Tuition Fees for 2025/26 Academic Year

Scholarships and Funding

UK Scholarship

Students from England, Wales and Northern Ireland, who pay tuition fees may be eligible for specific scholarships allowing them to receive additional funding. These are designed to provide assistance to help students support themselves during their time at Aberdeen.

Aberdeen Global Scholarship

The University of Aberdeen is delighted to offer eligible self-funded international on-campus undergraduate students a £6,000 scholarship for every year of their programme. More about this funding opportunity.

Funding Database

View all funding options in our Funding Database.

Careers

Mechanical Engineering graduates are employed in a wide range of industry sectors such as the manufacturing, energy, construction, automotive, aerospace and medical industries. They are involved in the design, manufacturing, installation and commissioning of mechanical systems and new technologies, and in the safety and reliability assessment of engineering structures and components.

Recent graduate job roles have included:

  • Design Engineer
  • Graduate Mechanical Engineer
  • Consultant Engineer
  • Project Engineer
  • Graduate Sustainability Engineer
  • Engineering Manager
  • Reliability Engineer

Recent graduates work at companies such as:

  • Atkins
  • BP
  • Babcock
  • BrewDog
  • Cummins
  • Jaguar Landrover
  • Loganair
  • Nissan
  • Reliance Energy
  • Subsea 7
  • Wood Group
  • UK Astronomy Technology Centre

Accreditation

Our Mechanical Engineering degrees are accredited by the Engineering Council and are your first step towards achieving Chartered Engineer status with the Institution of Mechanical Engineers (IMechE).

This degree holds accreditation from

Engineering Work Experience

The Engineering Work Experience course develops students’ work readiness. Hear what our students and partner organisations have to say about their experience.

Focus on employability

Image for useful fact about this Degree

100 Years of Engineering

The School of Engineering is celebrating 100 years of engineering at the University of Aberdeen in 2023.

Image for useful fact about this Degree

Industry Project

You can undertake your level 4 project with one of our many industry partners, to gain hands-on experience and work on real-world engineering challenges.

Our Experts

power facts

Information About Staff Changes

You will be taught by a range of experts including professors, lecturers, teaching fellows and postgraduate tutors. However, these may be subject to change - see our Student Terms and Conditions page.

Features

Image for TAU Formula Racing
TAU Formula Racing

TAU Formula Racing

TAU (Team Aberdeen University) Racing is a student-run Formula Student team that competes annually at Silverstone. It is made up of students from a variety of disciplines and helps develop excellent and highly-relevant career skills.

Image for Student Societies
Student Societies

Student Societies

The University is home to a broad range of student societies including professional teams, extra-curricular and subject-focused organisations and purely recreational groups based on a shared interest.

Find out more

Discover Uni

Discover Uni draws together comparable information in areas students have identified as important in making decisions about what and where to study. You can compare these and other data for different degree programmes in which you are interested.

Get in Touch

Contact Details

Address
Student Recruitment & Admissions
University of Aberdeen
University Office
Regent Walk
Aberdeen
AB24 3FX

Social Media