Introduction

The very best engineers working in industry not only have exceptional engineering knowledge and skills but they also have a solid grounding in commercial decision making, finance, economics and planning.

This programme is studied on campus.

The main difference between this programme and the standard MEng Mechanical Engineering degree comes in year 4.

Where the standard MEng programme offers two year 4 options, this programme has one option for year 4 and it contains the 15 credit "Business and Management Essentials" course. This particular course is designed with engineers in mind and aims to provide students with a broad ranging introduction to wide variety business and management topics, which should enable them to perform more effectively as graduate engineers and more senior roles were they are likely to have broader responsibilities.

There are a number of examples where our engineering graduates have moved into MD and CEO roles within the oil and gas and other industry sectors. This degree programme is ideal for those individuals that wish to strengthen their understanding of key business principles.

Degree marketing image

Key Programme Information

At a Glance

Learning Mode
On Campus Learning
Degree Qualification
MEng
Duration
60 months
Study Mode
Full Time
Start Month
September
UCAS Code
H3N2

What You'll Study

The first two years cover general Engineering, with elements of Chemical, Mechanical, Petroleum and Electrical/Electronics, as well as Civil. In the later years you specialise, following your chosen discipline in greater depth. You do not need to finalise your choice of specialisation until you begin third year.

It is possible to move between MEng and BEng and this can be accomplished at any point until the second half session of fourth year. Successful BEng candidates will be offered the chance to change to the MEng and there is no quota, meaning that if grade requirements are met that transfer is guaranteed.

Year 1

Year 1

Compulsory Courses

Principles of Electronics (EG1008) - 15 Credit Points

The aim of the course is to introduce basic concepts of electrical & electronics within a context of general engineering. The topics covered are kept at an elementary level with the aim of providing the foundational material for subsequent courses at levels 1 and 2. The course adopts the philosophy of application oriented teaching. During each topic the students will be provided with examples of day-to-day devices. Topics covered include dc circuit analysis, electronic amplifiers, digital circuits, optoelectronics, and ac theory.

View detailed information about this course

Electronics Design (EE1501) - 15 Credit Points

This course provides an introduction to the design and analysis techniques used within electronic engineering, and to the major active components (diodes and transistors). The course opens with a description of charges, the forces between charges and the concept of electric fields. The second part of the course deals with semiconductor devices, opening with fundamental properties of doped semiconductors.

View detailed information about this course

CAD and Communication in Engineering Practice (EG1010) - 15 Credit Points

The course is designed to introduce the students to different methods of communication in the process of interchanging ideas and information. Oral presentation and writing of technical reports are introduced. The importing data from web-based and library-based sources will be integrated through information retrieval and investigative skills training. Professional ethics are covered on plagiarism, copyright and intellectual property. Engineering drawing skills and knowledge of relevant British and International Standards will be developed through intensive training in the use of computer aided design and modelling package, SolidWorks. Standard drawing formats including 3D depiction of stand alone parts and assemblies are covered.

View detailed information about this course

Engineering Mathematics 1 (EG1504) - 15 Credit Points

The course presents fundamental mathematical ideas useful in the study of Engineering. A major focus of the course is on differential and integral calculus. Applications to Engineering problems involving rates of change and averaging processes are emphasized. Complex numbers are introduced and developed. The course provides the necessary mathematical background for other engineering courses in level 2.

View detailed information about this course

Fundamentals of Engineering Materials (EG1012) - 15 Credit Points

Engineering design depends on materials being shaped, finished and joined together. Design requirements define the performance required of the materials. What do engineers need to know about materials to choose and use them successfully? They need a perspective of the world of materials. They need understanding of material properties. They need methods and tools to select the right material for the job. This course will help you develop knowledge and skills required for the successful selection and use of engineering materials.

View detailed information about this course

Fundamental Engineering Mechanics (EG1510) - 15 Credit Points

Engineering Mechanics is concerned with the state of rest or motion of objects subject to the action of forces. The topic is divided into two parts: STATICS which considers the equilibrium of objects which are either at rest or move at a constant velocity, and DYNAMICS which deals with the motion and associated forces of accelerating bodies. The former is particularly applied to beams and truss structures. The latter includes a range of applications, such as car suspension systems, motion of a racing car, missiles, vibration isolation systems, and so on.

View detailed information about this course

Professional Skills Part 1 (PD1001)

This course, which is prescribed for level 1 students and optional for level 2 students, is studied entirely online and covers topics relating to careers and employability, equality and diversity and health, safety and wellbeing. During the course you will learn about the Aberdeen Graduate Attributes, how they are relevant to you and the opportunities available to develop your skills and attributes alongside your University studies. You will also gain an understanding of equality and diversity and health, safety and wellbeing issues. Successful completion of this course will be recorded on your Enhanced Transcript as ‘Achieved’ (non-completion will be recorded as ‘Not Achieved’). The course takes approximately 3 hours to complete and can be taken in one sitting, or spread across a number of weeks and it will be available to you throughout the academic year.This course, which is prescribed for level 1 students and optional for level 2 students and above, is studied entirely online and covers topics relating to careers and employability, equality and diversity and health, safety and wellbeing. During the course you will learn about the Aberdeen Graduate Attributes, how they are relevant to you and the opportunities available to develop your skills and attributes alongside your University studies. You will also gain an understanding of equality and diversity and health, safety and wellbeing issues. Successful completion of this course will be recorded on your Enhanced Transcript as ‘Achieved’ (non-completion will be recorded as ‘Not Achieved’). The course takes approximately 3 hours to complete and can be taken in one sitting, or spread across a number of weeks and it will be available to you throughout the academic year

View detailed information about this course

Optional Courses

  • Select a further 30 credit points from courses of choice
Year 2

Year 2

Compulsory Courses

Fluid Mechanics and Thermodynamics (EG2004) - 15 Credit Points

The fluid mechanics section of the course begins with the material properties of fluids. This is followed by studying fluid statics and principles of fluid motion. Bernoulli’s equation is used to explain the relationship between pressure and velocity. The final fluids section introduces the students to incompressible flow in pipelines.

The thermodynamics section presents: the gas laws, including Van Der Waals’ equation; the first law of thermodynamics with work done, heat supply, and the definitions of internal energy and enthalpy. The second law is introduced including entropy through the Carnot cycle.

View detailed information about this course

Design and Computing in Engineering Practice (EG2501) - 15 Credit Points

A general engineering course that provides an insight into the principles of engineering design process, computer programming in MATLAB and its application in parametric study and basic design optimisation, environmental ethics and sustainability in the context of design, and Computer Aided Design (CAD) using Solidworks. The course also includes hands-on exercises on the manufacture of simple parts using a variety of machine tools and joining processes.

View detailed information about this course

Process Engineering (EG2011) - 15 Credit Points

A general engineering course that provides insight into the two main conservation principles, mass and energy. Processes are usually described through block diagrams. This language, common to many disciplines in engineering, helps the engineer to look at their processes with an analytical view. Degree of freedom analysis is addressed, emphasising its importance to solve a set of linear equations that model fundamental balances of mass. Practical examples of Energy balances are displayed, bringing Thermodynamics to a practical level. Heat Transfer is introduced. Process control is introduced, explaining basic control techniques and concepts, i.e sensors, feedback, control loops and PID controllers.

View detailed information about this course

Solids and Structures (EA2502) - 15 Credit Points

This course provides students with the opportunity to refresh and extend their knowledge to analyse the mechanical behaviour of engineering materials and structures. In particular, mechanical properties of materials, and 2D and 3D stresses and strains are examined, the effects of internal imperfections on the performance of materials under loading, brittle fracture, fatigue and non-destructive testing are discussed. The structural analysis of beams and columns, deflection and buckling, as well as design applications are also considered in the course.

View detailed information about this course

Electrical and Mechanical Systems (EG2503) - 15 Credit Points

This course provides students with an integrated development of methods for modelling, analysing and designing systems comprising electrical and mechanical components. In doing so it intends to emphasise to the students the similarity in behaviour between electrical and mechanical systems. The course aims to give an introduction to both electrical machines, circuit and systems, transformers, and similar mechanical systems like gearbox, vibrating system and principles of dynamics, and thus provide the foundation material for several courses at level 3 .

View detailed information about this course

Engineering Mathematics 2 (EG2012) - 15 Credit Points

This course follows Engineering Mathematics 1 in introducing all the mathematical objects and techniques needed by engineers. It has three parts:

  • Matrices: definitions, operations, inverse and determinant; application to systems of linear equations.
  • Ordinary differential equations: 1st order (linear and separable), 2nd order with constant coefficients, forced osciallations and resonance.
  • Functions of two variables: partial derivatives and extrema, the chain rule, the heat equation and the wave equation.

View detailed information about this course

Optional Courses

  • Select a further 30 credit points from courses of choice
Year 3

Year 3

Compulsory Courses

Engineering Analysis and Methods 1 (EG3007) - 15 Credit Points

Modern engineering analysis relies on a wide range of analytical mathematical methods and computational techniques in order to solve a wide range of problems. The aim of this course is to equip students with the necessary skills to quantitatively investigate engineering problems. Examples applying the methods taught to practical situations from across the full range of engineering disciplines will feature heavily in the course.

View detailed information about this course

Dynamics 1 (EM3511) - 15 Credit Points

This course introduces the theory of dynamics and the vibration of single and multi-degree of freedom systems, and dynamics of rotating and reciprocating machinery.

View detailed information about this course

Stress Analysis A (EM3015) - 15 Credit Points

One of the roles of an engineer is to ensure that engineering components perform in service as intended and do not fracture or break into pieces. However, we know that sometimes engineering components do fail in service. Course examines how we determine the magnitude of stresses and level of deformation in engineering components and how these are used to appropriately select the material and dimensions for such component in order to avoid failure. Focus is on using stress analysis to design against failure, and therefore enable students to acquire some of the fundamental knowledge and skills required for engineering design.

View detailed information about this course

Mechanics of Structures (EA3518) - 15 Credit Points

The major topic of this course is an introduction to modern methods of elastic structural analysis. In this topic, direct, energy and matrix methods are jointly used to solve, initially, problems of the deformation of simple beams. The theorem of virtual work is introduced in the context of beams and frameworks.

The rigid-plastic analysis of beams is then introduced along with the upper bound theorem and their importance to engineering design.

View detailed information about this course

Fluid Mechanics (EM3019) - 15 Credit Points

The course begins with dimensional analysis and the concept of dynamic similarity applied to fluid flow phenomena. This is followed by sections on the energy and momentum equations applied to a range of problems in civil, mechanical, chemical and petroleum engineering, including steady flow in pipes, design of pump-pipeline systems, cavitation, forces on bends, nozzles and solid bodies, turbomachinery and propellor theory. A section on unsteady flow applies inertia and water hammer theory to the calculation of pressure surge in pipes. The final section deals with flow through porous media such as flow through soils and rocks.

View detailed information about this course

Engineering Thermodynamics (EM3521) - 10 Credit Points

The course begins introducing thermodynamic properties and reviewing first and second laws. The material is then taken forward into application in a focused module on production of power from heat which includes: steam power plants; internal-combustion and gas-turbine engines. This is followed by a module on refrigeration and liquefaction. The course continues with a detailed discussion of the applications of thermodynamics to flow processes including: duct flow of compressible fluids in pipes and nozzles; turbines; compression processes. The course concludes with a module on psychrometry which includes: humidity data for air-water systems; humidification & dehumidification systems.

View detailed information about this course

Engineering Materials (EM3028) - 15 Credit Points

The course focuses, initially, on the major groups of solid materials – metals, ceramics, polymers, and provides an introduction to materials selection. Strengthening mechanisms in these systems and the relationship between microstructure and mechanical properties are highlighted. The main failure and degradation processes of materials in service, fracture, fatigue, creep and corrosion, are considered. The major welding and adhesive bonding processes are introduced, and structural integrity of welded joints is examined. Finally, the course gives a comprehensive introduction to composite materials and motivation for their use in current structural applications. Manufacturing of different types of composites is reviewed.

View detailed information about this course

Design of Mechanical Elements (EM3522) - 10 Credit Points

Aimed at students interested in mechanical engineering and aims to equip students with the skills and knowledge required to take a design requirement/concept to a fully implemented product. It will provide an overview of a multi-stage design methodology followed by procedures for the detailed design of various mechanical elements including gears, shaft and bearings. These procedures will include design to resist fatigue failure and will be taught using an example product. The course will include aspects of sustainability and choice of method for manufacture. Assessed through a series of group design exercises.

View detailed information about this course

Project and Safety Management (EG3599) - 10 Credit Points

To course aims to provide students with an awareness of purpose, principals, fundamental concepts and strategies of safety and project management.

View detailed information about this course

Year 4

Year 4

Compulsory Courses

MEng Individual Project (EG4013) - 45 Credit Points

To provide the student with the opportunity of pursuing a substantial and realistic research project in the practice of engineering at or near a professional level, and to further enhance the student's critical and communication skills. The project will usually be carried out at the University of Aberdeen but may be carried out at industry or other research location.

View detailed information about this course

Fluid Dynamics (EM40JJ) - 10 Credit Points

The course begins with consideration of boundary layer development over a flat plate and curved surfaces, leading to boundary layer separation and forces on immersed bodies. This is followed by study of water wave theory with particular application to coastal and offshore engineering. These topics are also part of the EG40JF Civil Engineering Hydraulics course. The second part of the course concentrates on compressible flow. Using the fundamental conservation equations, the characteristics of converging-diverging nozzles and accelerating supersonic flows are examined. Plane and oblique shock waves, Prandtl-Meyer flow and Navier-Stokes equations are then introduced.

View detailed information about this course

Heat and Momentum Transfer (EM40JN) - 10 Credit Points

The course focuses on applied momentum and heat transport in engineering problems. It demonstrates how fundamental design equations can be derived for a wide range of real engineering problems (e.g. nuclear fuel rods, radiation shielding, electrical heaters etc). The course makes it clear that engineering is the art of applying mathematics to the real world and develops the tools required to tackle a wide range of engineering challenges.

The analytical results of transport phenomena are demonstrated in simple systems before discussing more complex systems, such as boiling and condensation, which require the use of semi-empirical correlations to solve.

View detailed information about this course

Dynamics 2 (EG40JM)
Business and Management Essentials (PC4002) - 15 Credit Points

The course aims to provide students with a broad ranging introduction to wide variety business and management topics which should enable them to perform more effectively as graduate engineers and more senior roles were they are likely to have broader ranging responsibilities.

The course is aimed primarily at undergraduate students studying for Engineering degree but available to others.

View detailed information about this course

Optional Courses

  • Select a further 30 credit points from courses of choice
Year 5

Year 5

Compulsory Courses

Computational Fluid Dynamics (EG501V) - 15 Credit Points

The course aims to provide understanding of main principles and techniques underpinning computational fluid dynamics (CFD) combining numerical methods with practical experience using appropriate software. The course develops a foundation for understanding, developing and analysing successful simulations of fluid flows applicable to a broad range of applications.

View detailed information about this course

The Engineer in Society (EG501W) - 15 Credit Points

Students will examine the societal grand challenges of water, food, medicine and energy (electricity and heat) to thread together the themes of environment, sustainability and ethics.

The course also aims to provide graduates with a versatile framework for evaluating and developing business models which should prove invaluable for both potential entrepreneurs and future senior executives.

View detailed information about this course

Numerical Simulation of Waves (EG501S) - 15 Credit Points

Wave equations describe transient phenomena commonly encountered in all areas of engineering. This course covers: (i) elastic waves, such as response of offshore structures to wind or wave loading, earthquakes; (ii) acoustic waves such as water hammer in pipelines, micro-pressure waves in railway tunnels; (iii) electromagnetic waves, such as signals in transmission lines, transient states in DC cables. These phenomena in real world engineering applications are simulated using several numerical methods. Students develop their own simulation codes using Matlab or any other programming language, and run a series of simulations for the problem of their choice.

View detailed information about this course

Fire and Explosion Engineering (EG5071) - 15 Credit Points

Hydrocarbon fires and explosions produce extreme loading on engineering components. Structural steels lose their strength and stiffness well below the temperatures associated with hydrocarbon fires. Safety-critical elements must be designed to withstand both these temperatures and the blast overpressures that result from hydrocarbon explosions. Simple models are used to assess the loading that results from fires and explosions. Structural elements are analysed to illustrate the design procedures that are required to prevent escalation and to design against major accident scenarios.

View detailed information about this course

MEng Group Design (EG5565) - 30 Credit Points

Real-life contemporary engineering projects and challenges invariably require inputs from, and collaboration amongst, multiple disciplines. Furthermore, legal and economic aspects, as well as safety, team work and project management must also be successfully navigated through. This course enables students to immerse themselves in a realistic, multidisciplinary, multifaceted and complex team design project that will draw on their previous specialist learning and also enable gaining and practicing new skills of direct relevance to their professional career.

View detailed information about this course

Engineering Risk and Reliability Analysis (EG55P6) - 15 Credit Points

The world is full of uncertainties and there is a level of risk in every human activity, including engineering. Many industries require an engineer to manage significant risks and design for high reliability, such as oil and gas, subsea, nuclear, aviation and large civil projects (e.g. bridges and dams). To meet these engineering challenges and make rational decisions in the presence of uncertainty, this course will introduce students to methods and tools used by engineers to analysis risk and reliability.

View detailed information about this course

Optional Courses

Select one of the following

  • Mathematical Optimisation (EG551T)
  • Pipelines and Soil Mechanics (EG55F2)
  • Risers Systems and Hydrodynamics (EG55F6)
Pipelines and Soil Mechanics (EG55F2) - 15 Credit Points

Offshore production of oil and gas requires transportation of the oil and gas from where it is produced to shipping vessels, storage tanks or refinery. The transportation is done using pipelines which are installed on the seabed. This course examines the engineering and scientific concepts that underpin the selection of the material and size of such pipelines as well as safe installation and operation. The environmental impact and the role played by the seabed profile are also discussed. Contribution from industry-based practicing engineers is used to inform students of current practices and technologies in subsea pipelines.

View detailed information about this course

Risers Systems and Hydrodynamics (EG55F6) - 15 Credit Points

The course provides students with detailed knowledge of risers systems design considerations. Typical riser systems including flexible, steel catenary, hybrid and top tensioned riser systems are covered. The ocean environmental hydrodynamics and interactions between vessel, mooring and riser systems are also considered.

View detailed information about this course

Mathematical Optimisation (EG551T) - 15 Credit Points

Ever wondered how Excel is able to draw an optimal line through a set of points? This course looks at how typical engineering problems that cannot be described mathematically (or are difficult to do so) can be solved so that the optimal solution is found. The course contains a range of examples to show how the techniques are applied to real world problems in different engineering disciplines. The course will show how to develop computational algorithms from scratch, with a fundamental understanding of how the algorithms function, both mathematically and then in real time on a computer.

View detailed information about this course

Course Availability

We will endeavour to make all course options available; however, these may be subject to timetabling and other constraints. Please see our InfoHub pages for further information.

How You'll Study

Learning Methods

  • Field Work
  • Group Projects
  • Individual Projects
  • Lectures
  • Research
  • Tutorials

Assessment Methods

Students are assessed by any combination of three assessment methods:

  • coursework such as essays and reports completed throughout the course;
  • practical assessments of the skills and competencies they learn on the course; and
  • written examinations at the end of each course.

The exact mix of these methods differs between subject areas, years of study and individual courses.

Honours projects are typically assessed on the basis of a written dissertation.

Further Information

View detailed learning and assessment information for this programme

How the programme is taught

The typical time spent in scheduled learning activities (lectures, tutorials, seminars, practicals), independent self-study or placement is shown for each year of the programme based on the most popular course choices selected by students.

How the programme is assessed

The typical percentage of assessment methods broken down by written examination, coursework or practical exams is shown for each year of the programme based on the most popular course choices selected by students.

Year 1

Learning Method
scheduled: 40%
independent: 60%
placement: 0%
Assessment
written: 68%
coursework: 32%
practical: 0%

Year 2

Learning Method
scheduled: 34%
independent: 66%
placement: 0%
Assessment
written: 62%
coursework: 36%
practical: 2%

Year 3

Learning Method
scheduled: 40%
independent: 60%
placement: 0%
Assessment
written: 77%
coursework: 23%
practical: 0%

Year 4

Learning Method
scheduled: 12%
independent: 88%
placement: 0%
Assessment
written: 40%
coursework: 54%
practical: 6%

Year 5

Learning Method
scheduled: 79%
independent: 21%
placement: 0%
Assessment
written: 50%
coursework: 42%
practical: 8%

Why Study Mechanical Engineering with Business Management?

Why Business Management

  • A UK top three university for the impact of the world-leading research being done by our academics in business and management.
  • By studying Business Management at Aberdeen, you will gain a qualification from one of the top 1% universities in the world.
  • Our research centres including ACREEF (the Aberdeen Centre for Research in Energy Economics and Finance) headed by leading international petroleum economist and author Professor Alex Kemp, adviser to the Scottish Government.
  • Aberdeen is home to CELMR (the Centre for European Labour Market Research) which leads research in education, skills and labour markets, so topical today.
  • Professional training facilities include the virtual Thomson Reuters Eikon™ trading floor, used by major financial services companies across the world and integrating real activity in financial markets directly in to our students’ courses.
  • Enterprise Campus, a new initiative to nurture entrepreneurial skills and support students wanting to progress their own business ideas.
  • The spectacular, award-winning Sir Duncan Rice Library, with excellent study facilities, state-of-the-art technology, and a first-class collection of reference works in business and management.
  • A packed programme of events and the annual May Festival attracting internationally acclaimed public figures, business leaders, authors and broadcasters to discuss and debate critical issues and challenges in the world today.
  • A Business Management programme which perfectly balances theory and practical work, with strong links with local and global businesses giving you cutting-edge insights in to the subject.
  • Aberdeen is the main European centre for the oil and gas industry, and international accountancy firms, multinational companies and financial services all have offices in the city.

Why Engineering

  • The first two years you study general engineering, with elements of Chemical, Civil, Electrical/Electronics, Mechanical and Petroleum. This means you have vital knowledge of all areas – making you far more adaptable in employment.
  • Programmes reflect ‘systems engineering’ approach in modern industry.
  • World-class facilities, including laboratories dedicated to areas of work such as satellite communications, computer aided design, electrical machines, materials testing, laser welding, hydraulics, fluids, concrete, large structures and geotechnics.
  • Our philosophy is one of world-class teaching in an atmosphere of research. Staff in the School have won national awards, and strong links with industry ensure teaching is in line with today's requirements.
  • The School has produced thousands of career-ready graduates over the decades, many who have progressed into Managing Director and Chief Executive roles in the oil and gas and wider energy industries.
  • We work closely with colleagues across geology, chemistry and business disciplines to ensure the teaching is fit-for purpose.
  • We are well connected with local, national and international industry, particularly in the oil/gas/energy industry where students get the chance to experience real-life industry challenges and projects, through guest lectures, visits and networking.
  • Accreditation by the relevant professional engineering institutions, providing first steps into becoming a chartered engineer. UG Engineers intending to follow an engineering career should consider student membership of the relevant institution.
  • Our award winning Society of Petroleum Engineers (SPE) Student Chapter is one of the 230 student chapters around the world. We build strong relationships with members and non-members alike, and help you gain insight into the oil and gas industry.
  • TAU Racing was established in 2007 by a group of undergraduate engineers of various disciplines. Each year the team's goal is to design and build a single seat racing car to compete at Silverstone in the Formula Student competition.
  • We have a number of student-run Societies, including our Engineering Society. These are great social groups to get involved with and deliver a number of benefits and opportunities for industry engagement.
  • Our General Engineering School was ranked 1st in the Scotland and 2nd in the UK in the Guardian League Tables for graduate employment.

Entry Requirements

You will find all the information you require about entry requirements on our dedicated 'Entry Requirements' page. You can also find out about the different types of degrees, offers, advanced entry, and changing your subject.

Qualifications

The information below is provided as a guide only and does not guarantee entry to the University of Aberdeen.

  • 4H at AABB
  • AB in Mathematics and Physics/Engineering Science. If applicant presents with H in Engineering Science instead of Physics, Mathematics must be A grade.
  • S at grades 1, 2, or 3, or National 5 at grades A, B or C in English

You can find further information under the Engineering tab on the Undergraduate Entry Requirements page.

Further detailed entry requirements for Engineering degrees.

English Language Requirements

To study for a degree at the University of Aberdeen it is essential that you can speak, understand, read, and write English fluently. Read more about specific English Language requirements here.

Fees and Funding

You will be classified as one of the fee categories below.

Fee Waiver

For international students (all non-EU students) entering in 2017/18, the 2017/18 tuition fee rate will apply to all years of study; however, most international students will be eligible for a fee waiver in their final year via the International Undergraduate Scholarship.

Fee information
Fee category Cost
Home / EU £1,820
All Students
RUK £9,250
Students Admitted in 2018/19 Academic Year
International Students £18,400
Students Admitted in 2018/19 Academic Year

Additional Fees

  • In exceptional circumstances there may be additional fees associated with specialist courses, for example field trips. Any additional fees for a course can be found in our Catalogue of Courses.
  • For more information about tuition fees for this programme, including payment plans and our refund policy, please visit our InfoHub Tuition Fees page.

Our Funding Database

View all funding options in our Funding Database.

Careers

You can have two very distinct career option possibilities with Mechanical Engineering and Business Management or you can choose to work towards a management position within companies requiring engineering knowledge. Mechanical Engineering opens your career possibilities up within the aerospace, rail, construction, pharmaceuticals, FMCG industries and many other industries, or you may choose a position which requires a level of engineering knowledge but is more focused on top level business administration. Having such a wide range of vocational skills and management skills can be highly valued by employers but can allow you to become an entrepreneur in your own right.

Our Experts

Information About Staff Changes

You will be taught by a range of experts including professors, lecturers, teaching fellows and postgraduate tutors. Staff changes will occur from time to time; please see our InfoHub pages for further information.

Features

Image for TAU Formula Racing
TAU Formula Racing

TAU Formula Racing

TAU (Team Aberdeen University) Racing was established by a group of undergraduate engineers at the University. The goal each year is to design and build a single seat racing car to compete at Silverstone in the Formula Student competition.

Find out more
Image for Engineering Society
Engineering Society

Engineering Society

Student led social and employability events and networking.

Find out more

Unistats

Unistats draws together comparable information in areas students have identified as important in making decisions about what and where to study. You can compare these and other data for different degree programmes in which you are interested.

Get in Touch

Contact Details

Address
Student Recruitment & Admissions Service
University of Aberdeen
University Office
Regent Walk
Aberdeen
AB24 3FX