Mechanical and Electrical Engineering (5 years), MEng

In this section
Mechanical and Electrical Engineering (5 years), MEng

Introduction

Joint degree combining Mechanical and Electrical Engineering.

Join us on 20 November 2024 to meet the staff and students to find out more about Electrical and Electronic Engineering degree programmes.

Study Information

At a Glance

Learning Mode
On Campus Learning
Degree Qualification
MEng
Duration
60 months
Study Mode
Full Time
Start Month
September
UCAS Code
HHH6

Mechanical engineering is concerned with creative and imaginative use of engineering principles and science to shape the world around us, through the development of new materials, technologies, processes and products. Mechanical engineers design and develop everything that moves or has moving parts, ranging from spacecrafts and aeroplanes to racing cars, from household goods like refrigerators to the small motors that turn a CD in a CD player, from robotic control of machinery to nanotechnologies, from mechanical hearts and artificial limbs to fitness machines, and from oil and gas exploration and production technologies to wind turbines.

Our society relies on Electrical Engineers for everything from low power electrical machines, control systems, to high voltage electrical power generation and distribution systems. Electrical and Electronic Engineering is at the core of the modern world, from computers, to digital circuits, photonics and a wealth of electronic devices. Electrical and Electronic engineering is one of the most satisfying subjects that you can study.

What You'll Study

The first two years cover general Engineering, with elements of Chemical, Mechanical, Petroleum and Electrical/Electronics, as well as Civil. In the later years you specialise, following your chosen discipline in greater depth. You do not need to finalise your choice of specialisation until you begin third year.

It is possible to move between MEng and BEng and this can be accomplished at any point until the second half session of fourth year. Successful BEng candidates will be offered the chance to change to the MEng and there is no quota, meaning that if grade requirements are met that transfer is guaranteed.

Year 1

Compulsory Courses

Getting Started at the University of Aberdeen (PD1002)

This course, which is prescribed for level 1 undergraduate students (and articulating students who are in their first year at the University), is studied entirely online, takes approximately 5-6 hours to complete and can be taken in one sitting, or spread across a number of weeks.

Topics include orientation overview, equality and diversity, health, safety and cyber security and how to make the most of your time at university in relation to careers and employability.

Successful completion of this course will be recorded on your Enhanced Transcript as ‘Achieved’.

Principles of Electronics (EG1008)

15 Credit Points

The aim of the course is to introduce basic concepts of electrical & electronics within a context of general engineering. The topics covered are kept at an elementary level with the aim of providing the foundational material for subsequent courses at levels 1 and 2. The course adopts the philosophy of application oriented teaching. During each topic the students will be provided with examples of day-to-day devices. Topics covered include dc circuit analysis, electronic amplifiers, digital circuits, optoelectronics, and ac theory.

CAD and Communication in Engineering Practice (EG1010)

15 Credit Points

The course is designed to introduce the students to different methods of communication in the process of interchanging ideas and information. Oral presentation and writing of technical reports are introduced. The importing data from web-based and library-based sources will be integrated through information retrieval and investigative skills training. Professional ethics are covered on plagiarism, copyright and intellectual property. Engineering drawing skills and knowledge of relevant British and International Standards will be developed through intensive training in the use of computer aided design and modelling package, SolidWorks. Standard drawing formats including 3D depiction of stand alone parts and assemblies are covered.

Fundamentals of Engineering Materials (EG1012)

15 Credit Points

Engineering design depends on materials being shaped, finished and joined together. Design requirements define the performance required of the materials. What do engineers need to know about materials to choose and use them successfully? They need a perspective of the world of materials. They need understanding of material properties. They need methods and tools to select the right material for the job. This course will help you develop knowledge and skills required for the successful selection and use of engineering materials.

Electronics Design (EE1501)

15 Credit Points

This course provides an introduction to the design and analysis techniques used within electronic engineering, and to the major active components (diodes and transistors). The course opens with a description of charges, the forces between charges and the concept of electric fields. The second part of the course deals with semiconductor devices, opening with fundamental properties of doped semiconductors.

Engineering Mathematics 1 (EG1504)

15 Credit Points

The course presents fundamental mathematical ideas useful in the study of Engineering. A major focus of the course is on differential and integral calculus. Applications to Engineering problems involving rates of change and averaging processes are emphasized. Complex numbers are introduced and developed. The course provides the necessary mathematical background for other engineering courses in level 2.

Fundamental Engineering Mechanics (EG1510)

15 Credit Points

Engineering Mechanics is concerned with the state of rest or motion of objects subject to the action of forces. The topic is divided into two parts: STATICS which considers the equilibrium of objects which are either at rest or move at a constant velocity, and DYNAMICS which deals with the motion and associated forces of accelerating bodies. The former is particularly applied to beams and truss structures. The latter includes a range of applications, such as car suspension systems, motion of a racing car, missiles, vibration isolation systems, and so on.

Optional Courses

Select a further 30 credit points from courses of choice.

Year 2

Compulsory Courses

Fluid Mechanics and Thermodynamics (EG2004)

15 Credit Points

The fluid mechanics section of the course begins with the material properties of fluids. This is followed by studying fluid statics and principles of fluid motion. Bernoulli’s equation is used to explain the relationship between pressure and velocity. The final fluids section introduces the students to incompressible flow in pipelines.

The thermodynamics section presents: the gas laws, including Van Der Waals’ equation; the first law of thermodynamics with work done, heat supply, and the definitions of internal energy and enthalpy. The second law is introduced including entropy through the Carnot cycle.

Process Engineering (EG2011)

15 Credit Points

A general engineering course that provides insight into the two main conservation principles, mass and energy. Processes are usually described through block diagrams. This language, common to many disciplines in engineering, helps the engineer to look at their processes with an analytical view. Degree of freedom analysis is addressed, emphasising its importance to solve a set of linear equations that model fundamental balances of mass. Practical examples of Energy balances are displayed, bringing Thermodynamics to a practical level. Heat Transfer is introduced. Process control is introduced, explaining basic control techniques and concepts, i.e sensors, feedback, control loops and PID controllers.

Engineering Mathematics 2 (EG2012)

15 Credit Points

This course follows Engineering Mathematics 1 in introducing all the mathematical objects and techniques needed by engineers. It has three parts:

  • Matrices: definitions, operations, inverse and determinant; application to systems of linear equations.
  • Ordinary differential equations: 1st order (linear and separable), 2nd order with constant coefficients, forced oscillations and resonance.
  • Functions of two variables: partial derivatives and extrema, the chain rule, the heat equation and the wave equation.
Solids and Structures (EA2502)

15 Credit Points

This course provides students with the opportunity to refresh and extend their knowledge to analyse the mechanical behaviour of engineering materials and structures. In particular, mechanical properties of materials, and 2D and 3D stresses and strains are examined, the effects of internal imperfections on the performance of materials under loading, brittle fracture, fatigue and non-destructive testing are discussed. The structural analysis of beams and columns, deflection and buckling, as well as design applications are also considered in the course.

Electronic Systems (EE2504)

15 Credit Points

Electronics systems are discussed from basic concepts of digital logic to highlights of embedded microcontrollers. The journey begins with the elementary building blocks of Boolean algebra (logic gates and flip-flops) that are used to design combinatorial/sequential logic circuits, e.g. implementing a simple calculator or a temperature control circuit. The design of complex system is addressed introducing embedded microcontrollers, discussing their core components (e.g. timers, memory) and required programming operations.

Hands-on lab sessions (and relative assignments) include software-based simulations and hardware implementation of systems that allow students to test and deepen their understanding of the subject.

Design and Computing in Engineering Practice (EG2501)

15 Credit Points

A general engineering course that provides an insight into the principles of engineering design process, computer programming in MATLAB and its application in parametric study and basic design optimisation, environmental ethics and sustainability in the context of design, and Computer Aided Design (CAD) using Solidworks. The course also includes hands-on exercises on the manufacture of simple parts using a variety of machine tools and joining processes.

Electrical and Mechanical Systems (EG2503)

15 Credit Points

This course provides students with an integrated development of methods for modelling, analysing and designing systems comprising electrical and mechanical components. In doing so it intends to emphasise to the students the similarity in behaviour between electrical and mechanical systems. The course aims to give an introduction to both electrical machines, circuit and systems, transformers, and similar mechanical systems like gearbox, vibrating system and principles of dynamics, and thus provide the foundation material for several courses at level 3 .

Optional Courses

Select a further 15 credit points from courses of choice.

Year 3

Compulsory Courses

Control Systems (EE3043)

15 Credit Points

The aim of the course is to provide students with a basic understanding and concepts of control systems. The course starts by introducing basic concepts of feedback control systems using a number of practical examples. Mathematical modelling of physical systems and representing them in block diagrams with transfer functions are presented. Basic control system response characteristics (stability, transient response, steady state response) and analysis and design procedures are introduced using first and second order systems. Analysis of control systems using Routh-Hurwitz criterion, root locus, and Bode plot methods are considered.

Engineering Analysis and Methods 1a (EG3007)

15 Credit Points

Modern engineering analysis relies on a wide range of analytical mathematical methods and computational techniques in order to solve a wide range of problems. The aim of this course is to equip students with the necessary skills to quantitatively investigate engineering problems. Examples applying the methods taught to practical situations from across the full range of engineering disciplines will feature heavily in the course.

Fluid Mechanics (EM3019)

15 Credit Points

The course begins with dimensional analysis and the concept of dynamic similarity applied to fluid flow phenomena. This is followed by sections on the energy and momentum equations applied to a range of problems in civil, mechanical, chemical and petroleum engineering, including steady flow in pipes, design of pump-pipeline systems, cavitation, forces on bends, nozzles and solid bodies, turbomachinery and propeller theory. A section on unsteady flow applies inertia and water hammer theory to the calculation of pressure surge in pipes. The final section deals with flow through porous media such as flow through soils and rocks.

Engineering Materials (EM3028)

15 Credit Points

The course focuses, initially, on the major groups of solid materials – metals, ceramics, polymers, and provides an introduction to materials selection. Strengthening mechanisms in these systems and the relationship between microstructure and mechanical properties are highlighted. The main failure and degradation processes of materials in service, fracture, fatigue, creep and corrosion, are considered. The major welding and adhesive bonding processes are introduced, and structural integrity of welded joints is examined. Finally, the course gives a comprehensive introduction to composite materials and motivation for their use in current structural applications. Manufacturing of different types of composites is reviewed.

Electrical Power Engineering (EE3557)

15 Credit Points

The course studies the systems for the generation, transmission and use of electrical energy. The per-unit notation system is introduced. Basic approaches in the three phase AC systems analysis are introduced. Three-phase induction and synchronous machines are studied, and a simple equivalent circuit for the machine is derived and used to explore the operating limitations of each type of the machine. Modern power conversion methods are discussed for conversion between AC and DC. This discussion includes power electronic switches and the basic topology of rectifiers, DC-DC converters and inverters. The advantages of switching conversion techniques over traditional circuits are highlighted.

Project and Safety Management (EG3599)

10 Credit Points

To course aims to provide students with an awareness of purpose, principals, fundamental concepts and strategies of safety and project management.

Dynamics 1 (EM3511)

15 Credit Points

This course introduces the theory of dynamics and the vibration of single and multi-degree of freedom systems, and dynamics of rotating and reciprocating machinery.

Engineering Thermodynamics (EM3521)

10 Credit Points

The course begins introducing thermodynamic properties and reviewing first and second laws. The material is then taken forward into application in a focused module on production of power from heat which includes: steam power plants; internal-combustion and gas-turbine engines. This is followed by a module on refrigeration and liquefaction. The course continues with a detailed discussion of the applications of thermodynamics to flow processes including: duct flow of compressible fluids in pipes and nozzles; turbines; compression processes. The course concludes with a module on psychrometry which includes: humidity data for air-water systems; humidification & dehumidification systems.

Design of Mechanical Elements (EM3522)

10 Credit Points

Aimed at students interested in mechanical engineering and aims to equip students with the skills and knowledge required to take a design requirement/concept to a fully implemented product. It will provide an overview of a multi-stage design methodology followed by procedures for the detailed design of various mechanical elements including gears, shaft and bearings. These procedures will include design to resist fatigue failure and will be taught using an example product. The course will include aspects of sustainability and choice of method for manufacture. Assessed through a series of group design exercises.

Year 4

Compulsory Courses

Sensing and Instrumentation (EE4017)

10 Credit Points

The course introduces sensing and instrumentation for various engineering applications. Major part of the course will consider case studies of sensing and instrumentation for various engineering applications and is suitable for all engineering and non-engineering students to learn about sensing and instrumentation.

Electrical Machines and Drives (EE40FE)

10 Credit Points

This course examines the performance and control of electrical machines and drives. Transient performance of various electrical machines (induction, synchronous and DC) is discussed using two-axis-machine theory. Steady state performance is also considered. Simulation techniques are used as appropriate in studying both transient and steady state performance of the electrical machines and drives. Medium and high-performance AC drives are considered, including V/f and vector control drives. Modern AC machine control in rotating DQ co-ordinate frame is studied in some detail. DC machine drives (thyristor-controlled and transistor-controlled drives) are discussed and analysed.

Fluid Dynamics (EM40JJ)

10 Credit Points

The course develops incompressible and compressible flow topics of broad interest to mechanical engineers. It demonstrates the link between well-developed theoretical studies and their practical application in offshore technology, aeronautics, engine design and fluid machinery. The course begins with water wave theory with particular application to coastal and offshore engineering. This is followed by consideration of boundary layer development over a flat plate and curved surfaces, leading to boundary layer separation and forces on immersed bodies. These topics are also part of the EA40JF Civil Engineering Hydraulics course. The second part of the course concentrates on compressible flow. Using the fundamental conservation equations, the characteristics of converging-diverging nozzles and accelerating supersonic flows are examined. Plane and oblique shock waves, Prandt-Meyer flow and Navier-Stokes equations are then introduced. The course concludes with a discussion of the behaviour of transonic aerofoils, and the design of supersonic engine inlets.

Dynamics 2 (EM40JP)

15 Credit Points

This course covers several advanced topics in the dynamics of structural and mechanical systems. The aims of the course are to develop analytical approaches to rigid body and flexible continuous systems with a view to the prediction and understanding of the behaviour of engineering components in a dynamic environment, to familiarise the students with the concept of nonlinearity and analyse and interpret the nonlinear dynamic behaviour of engineering systems and structures.

Optional Courses

Select one of the following options:

Option 1

  • MEng Individual Project (EG4013)
  • Select a further 30 credit points from courses of choice

Option 2

  • Individual Project Abroad (EG4513)
  • Select a further 15 credit points from level 3 or 4 courses of choice in 1st half semester.
MEng Individual Project (EG4013)

45 Credit Points

To provide the student with the opportunity of pursuing a substantial and realistic research project in the practice of engineering at or near a professional level, and to further enhance the student's critical and communication skills. The project will usually be carried out at the University of Aberdeen but may be carried out at industry or other research location.

Individual Project Abroad (MEng) (EG4513)

60 Credit Points

The course is designed to provide the student with the opportunity to carry out a project in an approved European institution by pursuing a substantial and realistic exercise in the practice of engineering at or near a professional level, and to further enhance the student's critical and communication skills.

Year 5

Compulsory Courses

Advanced Control Engineering (EE501T)

15 Credit Points

This is the second course in control engineering which looks at the state-space representation of systems as well as state-space based control design techniques. The course also introduces basic concepts in System Identification and Nonlinear Control. Traditional continuous-time as well as sampled-data (digital) systems are covered.

The Engineer in Society (EG501W)

15 Credit Points

Students will examine the societal grand challenges of water, food, medicine and energy (electricity and heat) to thread together the themes of environment, sustainability and ethics.

The course also aims to provide graduates with a versatile framework for evaluating and developing business models which should prove invaluable for both potential entrepreneurs and future senior executives.

MEng Group Design (EG5565)

30 Credit Points

Real-life contemporary engineering projects and challenges invariably require inputs from, and collaboration amongst, multiple disciplines. Furthermore, legal and economic aspects, as well as safety, team work and project management must also be successfully navigated through. This course enables students to immerse themselves in a realistic, multidisciplinary, multifaceted and complex team design project that will draw on their previous specialist learning and also enable gaining and practicing new skills of direct relevance to their professional career.

Engineering Risk and Reliability Analysis (EG55P6)

15 Credit Points

The world is full of uncertainties and there is a level of risk in every human activity, including engineering. Many industries require an engineer to manage significant risks and design for high reliability, such as oil and gas, subsea, nuclear, aviation and large civil projects (e.g. bridges and dams). To meet these engineering challenges and make rational decisions in the presence of uncertainty, this course will introduce students to methods and tools used by engineers to analysis risk and reliability.

Advanced Composite Materials (EM501Q)

15 Credit Points

Advanced materials underpin many industry sectors and are viewed as one of the key enabling technologies that can help address environmental, economic and social challenges the society is facing. Lightweight materials such as composites applied to vehicles, structures and devices can help reduce energy consumption and emissions, and increase energy efficiency. The aim of this course is introduce students to the mechanical behaviour of composite materials and the design of structures made of composites.

Optional Courses

First half-session options - Select one of the following:

  • Optical Systems and Sensing (EE5046)
  • Computational Fluid Dynamics (EG501V)

Second half-session options - Plus one of the following:

  • Mathematical Optimisation (EG551T)
  • Pipelines and Soil Mechanics (EG55F2)
  • Risers Systems and Hydrodynamics (EG55F9)
  • Finite Element Methods (EG55M1)
Optical Systems and Sensing (EE5046)

15 Credit Points

In recent years optical systems have become the centrepiece of many applications in science, engineering and commerce; ranging from optical communications to fibre sensors, holography to 3DTV, spectroscopy of materials to laser welding and cutting, and from precision measurement to laser surgery, to name but a few. The course offers students an overview of the concepts of modern optics, optical systems and sensing applications. A major part involves an introduction to lasers, their operation and incorporation into systems design. A case study approach is adopted to describe a range of sensing and system applications in industry, science and commerce.

Computational Fluid Dynamics (EG501V)

15 Credit Points

The course aims to provide understanding of main principles and techniques underpinning computational fluid dynamics (CFD) combining numerical methods with practical experience using appropriate software. The course develops a foundation for understanding, developing and analysing successful simulations of fluid flows applicable to a broad range of applications.

Mathematical Optimisation (EG551T)

15 Credit Points

Ever wondered how Excel is able to draw an optimal line through a set of points? This course looks at how typical engineering problems that cannot be described mathematically (or are difficult to do so) can be solved so that the optimal solution is found. The course contains a range of examples to show how the techniques are applied to real world problems in different engineering disciplines. The course will show how to develop computational algorithms from scratch, with a fundamental understanding of how the algorithms function, both mathematically and then in real time on a computer.

Pipelines and Soil Mechanics (EG55F2)

15 Credit Points

Offshore production of oil and gas requires transportation of the oil and gas from where it is produced to shipping vessels, storage tanks or refinery. The transportation is done using pipelines which are installed on the seabed. This course examines the engineering and scientific concepts that underpin the selection of the material and size of such pipelines as well as safe installation and operation. The environmental impact and the role played by the seabed profile are also discussed. Contribution from industry-based practicing engineers is used to inform students of current practices and technologies in subsea pipelines.

Riser Systems and Hydrodynamics (EG55F9)

15 Credit Points

The course provides students with detailed knowledge of risers systems design considerations. Typical riser systems including flexible, steel catenary, hybrid and top tensioned riser systems are covered. The ocean environmental hydrodynamics and interactions between vessel, mooring and riser systems are also considered.

Finite Element Methods (EG55M1)

15 Credit Points

The background to the finite element method and its use in various industrial applications is explained in this course. As well as the modelling of linear static and dynamic problems, the modelling of material and geometric non-linearity is an important aspect of the course. Coursework assignments will be based on the student edition of ABAQUS which is supplied with the Course Textbook which students are required to purchase.

We will endeavour to make all course options available. However, these may be subject to change - see our Student Terms and Conditions page.

How You'll Study

Learning Methods

  • Group Projects
  • Individual Projects
  • Lectures
  • Research
  • Tutorials

Assessment Methods

Students are assessed by any combination of three assessment methods:

  • coursework such as essays and reports completed throughout the course;
  • practical assessments of the skills and competencies learnt on the course; and
  • written examinations at the end of each course.

The exact mix of these methods differs between subject areas, year of study and individual courses.

Honours projects are typically assessed on the basis of a written dissertation.

Why Study Mechanical and Electrical Engineering?

Why Mechanical Engineering

  • The world needs mechanical engineers to help tackle some of the biggest issues we face, such as renewable energy, sustainable transport and food security.
  • Our degrees are accredited by the Engineering Council and are your first step towards achieving Chartered Engineer status with the Institution of Mechanical Engineers (IMechE).
  • The School of Engineering has strong links with industry, including local, national and international organisations, who support our teaching through guest lectures and seminars, placement opportunities, site visits and scholarships.
  • There are a number of societies directly related to mechanical engineering, where you can meet fellow students and develop your interests and new skills, including TAU Racing, PrototAU and the Aerospace Engineering Society.
  • Our interdisciplinary approach means students gain experience in each engineering discipline, making them highly sought-after by employers. This flexibility also means you choose your specialisation once you have experienced all five disciplines.

Aberdeen Global Scholarship

The University of Aberdeen is delighted to offer eligible self-funded international on-campus undergraduate students a £6,000 scholarship for every year of their programme.

View the Aberdeen Global Scholarship

Entry Requirements

Qualifications

The information below is provided as a guide only and does not guarantee entry to the University of Aberdeen.


General Entry Requirements

2024 Entry

SQA Highers
Standard: AABB (Mathematics and Physics or Engineering Science required*)
Applicants who achieve the Standard entry requirements over S4 and S5 will be made either an unconditional or conditional offer of admission.

A Levels
Standard: ABB (AB required in Mathematics, plus at least one from Physics, Design & Technology, Engineering or Chemistry). Applicants who are predicted to achieve the Standard entry requirements are encouraged to apply and may be made a conditional offer of admission.

International Baccalaureate:

Minimum of 34 points including Mathematics and Physics at HL (6 or above)

Irish Leaving Certificate:

Five subjects at Higher, with 4 at H2 and 1 at H3. H2 or above in Mathematics and H3 or above in Physics required.

* FOR CHEMICAL OR PETROLEUM ENGINEERING: Please note: For entry to Chemical or Petroleum Engineering an SQA Higher or GCE A Level or equivalent qualification in Chemistry is required for entry to year 1, in addition to the general Engineering requirements.

2025 Entry

SQA Highers
Standard: AABB (Mathematics and Physics or Engineering Science required*)
Applicants who achieve the Standard entry requirements over S4 and S5 will be made either an unconditional or conditional offer of admission.

A Levels
Standard: ABB (AB required in Mathematics, plus at least one from Physics, Design & Technology, Engineering or Chemistry). Applicants who are predicted to achieve the Standard entry requirements are encouraged to apply and may be made a conditional offer of admission.

International Baccalaureate:

Minimum of 34 points including Mathematics and Physics at HL (6 or above)

Irish Leaving Certificate:

Five subjects at Higher, with 4 at H2 and 1 at H3. H2 or above in Mathematics and H3 or above in Physics required.

* FOR CHEMICAL OR PETROLEUM ENGINEERING: Please note: For entry to Chemical or Petroleum Engineering an SQA Higher or GCE A Level or equivalent qualification in Chemistry is required for entry to year 1, in addition to the general Engineering requirements.

The information displayed in this section shows a shortened summary of our entry requirements. For more information, or for full entry requirements for Engineering degrees, see our detailed entry requirements section.


English Language Requirements

To study for an Undergraduate degree at the University of Aberdeen it is essential that you can speak, understand, read, and write English fluently. The minimum requirements for this degree are as follows:

IELTS Academic:

OVERALL - 6.0 with: Listening - 5.5; Reading - 5.5; Speaking - 5.5; Writing - 6.0

TOEFL iBT:

OVERALL - 78 with: Listening - 17; Reading - 18; Speaking - 20; Writing - 21

PTE Academic:

OVERALL - 59 with: Listening - 59; Reading - 59; Speaking - 59; Writing - 59

Cambridge English B2 First, C1 Advanced or C2 Proficiency:

OVERALL - 169 with: Listening - 162; Reading - 162; Speaking - 162; Writing - 169

Read more about specific English Language requirements here.

Fees and Funding

You will be classified as one of the fee categories below.

Fee information
Fee category Cost
RUK £9,250
Tuition Fees for 2025/26 Academic Year
EU / International students £24,800
Tuition Fees for 2025/26 Academic Year
Home Students £1,820
Tuition Fees for 2025/26 Academic Year

Additional Fees

  • In exceptional circumstances there may be additional fees associated with specialist courses, for example field trips. Any additional fees for a course can be found in our Catalogue of Courses.
  • For more information about tuition fees for this programme, including payment plans and our refund policy, please visit our Tuition Fees page.

Scholarships and Funding

UK Scholarship

Students from England, Wales and Northern Ireland, who pay tuition fees may be eligible for specific scholarships allowing them to receive additional funding. These are designed to provide assistance to help students support themselves during their time at Aberdeen.

Aberdeen Global Scholarship

The University of Aberdeen is delighted to offer eligible self-funded international on-campus undergraduate students a £6,000 scholarship for every year of their programme. More about this funding opportunity.

Funding Database

View all funding options in our Funding Database.

Careers

Mechanical Engineering graduates are employed in a wide range of industry sectors such as the manufacturing, energy, construction, automotive, aerospace and medical industries. They are involved in the design, manufacturing, installation and commissioning of mechanical systems and new technologies, and in the safety and reliability assessment of engineering structures and components.

Recent graduate job roles have included:

  • Design Engineer
  • Graduate Mechanical Engineer
  • Consultant Engineer
  • Project Engineer
  • Graduate Sustainability Engineer
  • Engineering Manager
  • Reliability Engineer

Recent graduates work at companies such as:

  • Atkins
  • BP
  • Babcock
  • BrewDog
  • Cummins
  • Jaguar Landrover
  • Loganair
  • Nissan
  • Reliance Energy
  • Subsea 7
  • Wood Group
  • UK Astronomy Technology Centre

Accreditation

Our Mechanical Engineering degrees are accredited by the Engineering Council and are your first step towards achieving Chartered Engineer status with the Institution of Mechanical Engineers (IMechE).

This degree holds accreditation from

Engineering Work Experience

The Engineering Work Experience course develops students’ work readiness. Hear what our students and partner organisations have to say about their experience.

Focus on employability

Image for useful fact about this Degree

100 Years of Engineering

The School of Engineering is celebrating 100 years of engineering at the University of Aberdeen in 2023.

Our Experts

updated power facts

Information About Staff Changes

You will be taught by a range of experts including professors, lecturers, teaching fellows and postgraduate tutors. However, these may be subject to change - see our Student Terms and Conditions page.

Features

Image for TAU Formula Racing
TAU Formula Racing

TAU Formula Racing

TAU (Team Aberdeen University) Racing is a student-run Formula Student team that competes annually at Silverstone. It is made up of students from a variety of disciplines and helps develop excellent and highly-relevant career skills.

Image for Student Societies
Student Societies

Student Societies

The University is home to a broad range of student societies including professional teams, extra-curricular and subject-focused organisations and purely recreational groups based on a shared interest.

Find out more

Discover Uni

Discover Uni draws together comparable information in areas students have identified as important in making decisions about what and where to study. You can compare these and other data for different degree programmes in which you are interested.

Get in Touch

Contact Details

Address
Student Recruitment & Admissions
University of Aberdeen
University Office
Regent Walk
Aberdeen
AB24 3FX

Social Media