Introduction

This degree brings together two very closely linked subjects and offers a tremendous degree programme to those with a strong interest in both.

This programme is studied on campus.

This programme follows a number of the core Computing Science courses undertaken as part of the straight BSc Computing Science degree and introduces key Physics components throughout all four years, in the form of a range of core and optional Physics courses. These include: Calculus, Optics and Electronics, Relativity and Quantum Mechanics, The Solid State, Nuclear and Semiconductor Physics and Modelling Theory.

The final year project is a joint computing and physics project.

Degree marketing image

Key Programme Information

At a Glance

Learning Mode
On Campus Learning
Degree Qualification
BSc
Duration
48 months
Study Mode
Full Time
Start Month
September
UCAS Code
IF13

What You'll Study

Year 1

Year 1

Compulsory Courses

Professional Skills Part 1 (PD1001)

This course, which is prescribed for level 1 students and optional for level 2 students, is studied entirely online and covers topics relating to careers and employability, equality and diversity and health, safety and wellbeing. During the course you will learn about the Aberdeen Graduate Attributes, how they are relevant to you and the opportunities available to develop your skills and attributes alongside your University studies. You will also gain an understanding of equality and diversity and health, safety and wellbeing issues. Successful completion of this course will be recorded on your Enhanced Transcript as ‘Achieved’ (non-completion will be recorded as ‘Not Achieved’). The course takes approximately 3 hours to complete and can be taken in one sitting, or spread across a number of weeks and it will be available to you throughout the academic year.This course, which is prescribed for level 1 students and optional for level 2 students and above, is studied entirely online and covers topics relating to careers and employability, equality and diversity and health, safety and wellbeing. During the course you will learn about the Aberdeen Graduate Attributes, how they are relevant to you and the opportunities available to develop your skills and attributes alongside your University studies. You will also gain an understanding of equality and diversity and health, safety and wellbeing issues. Successful completion of this course will be recorded on your Enhanced Transcript as ‘Achieved’ (non-completion will be recorded as ‘Not Achieved’). The course takes approximately 3 hours to complete and can be taken in one sitting, or spread across a number of weeks and it will be available to you throughout the academic year

View detailed information about this course

Computer Programming and Principles (CS1022) - 15 Credit Points

Students will be exposed to the basic principles of computer programming, e.g. fundamental programming concepts, algorithms, and maths (e.g. logic, set theory, graphs). The course consists of lectures where the principles are systematically developed; as the course does not presuppose knowledge of these principles, we start from basic intuitions. In addition to the lectures, there will be weekly practicals to work with the concepts. Understanding the principles behind computer programming gives one the framework to learn new programming concepts, adapt to changing circumstances, and engage in theoretical research in Computing Science.

View detailed information about this course

The Physical Universe A (PX1015) - 15 Credit Points

Physics is the most fundamental of the sciences, and if we wish to better understand the nature and behaviour of the Universe, it is perhaps the best place to start. This course introduces the basic topics of Physics, from the sub-microscopic scale of electrons and atoms, to the orbits of the planets and stars, to the celestial mechanics of galaxies. It encompasses the work of Physicists like Isaac Newton, Albert Einstein, Marie Curie and Jocelyn Bell Burnell. If you’ve ever been curious about how the world works, you will hopefully find this course, typically well-regarded by students, interesting.

View detailed information about this course

Calculus i (MA1005) - 15 Credit Points

Calculus is the mathematical study of change, and is used in many areas of mathematics, science, and the commercial world. This course covers differentiation, limits, finding maximum and minimum values, and continuity. There may well be some overlap with school mathematics, but the course is brisk and will go a long way quickly.

View detailed information about this course

Algebra (MA1006) - 15 Credit Points

This course introduces the concepts of complex numbers, matrices and other basic notions of linear algebra over the real and complex numbers. This provides the necessary mathematical background for further study in mathematics, physics, computing science, chemistry and engineering.

View detailed information about this course

Computer Architecture (CS1520) - 15 Credit Points

Beginning with digital logic gates and progressing to the design of combinational and sequential circuits, this course use these fundamental building blocks as the basis for what follows: the design of an actual MIPS microprocessor. In addition, students will get hands on experience on programming Intel 8086 assembly language which is the inner language spoken by the processor. By the end of the course, students will have a top-to-down understanding of how a micropressor works. The course is taught without prerequisites; students are taught with plenty of exercises from lectures, tutorials, practical and tests every week.

View detailed information about this course

The Physical Universe B (PX1513) - 15 Credit Points

Understanding electric and magnetic forces is of paramount importance for understanding the physical world. They are eventually responsible for the matter around us to self-organize (in solid, liquid and gas phases), with given structures, density, elastic properties, and so on. Furthermore, they are responsible for light emission and propagation across the space.

Already the first rudiments of electricity and magnetism will help to appreciate that they are two difference faces of the same coin: electromagnetism. This relationship is the first evidence of the possibility to build a unified description of the microscopic laws of the physical universe.

View detailed information about this course

Calculus II (MA1508) - 15 Credit Points

The aim of the course is to provide an introduction to Integral Calculus and the theory of sequences and series, to discuss their applications to the theory of functions, and to give an introduction to the theory of functions of several variables.

This provides the necessary mathematical background for further study in mathematics, physics, computing science, chemistry and engineering.

View detailed information about this course

Optional Courses

Select a further 15 credit points from courses of choice

Year 2

Year 2

Compulsory Courses

Mathematics for Computing Science (CS2013) - 15 Credit Points

This course provides a basic-level introduction to some areas of Discrete Mathematics that are of particular relevance to Computing. The course starts with a simple introduction to formal languages (starting from Regular Expressions and Finite-State Automata); it continues with an introduction to Predicate Logic (assuming basic familiarity with Propositional Logic); it concludes with an introduction to probability, focussing on Bayesian reasoning.

View detailed information about this course

Data Management (CS2015) - 15 Credit Points

This course will be of interest to anyone who wishes to learn to design and query databases using MSAccess, MySQL and MongoDB. The course aims to teach the material using case studies from real-world applications both in lectures and lab classes. You will develop a broad knowledge about database connectivity using JDBC, PHP and Ruby. You will also learn core theoretical concepts such as relational algebra, file organisation and indexing. At the end of this course you will be able to design and build Web and cloud-based databases and have a broad awareness and understanding of how database-driven applications operate.

View detailed information about this course

Light Science (PX2013) - 15 Credit Points

For most of us, our perceptions are governed most strongly by our vision. We see because of light, but what is light? It’s been considered a particle, a wave, and in modern physics is somehow both. This course explores the fascinating physics of this phenomenon, at an elementary mathematical level suitable for non-science students. We’ll cover petrological microscopy, of interest to geologists, interference and diffraction, how colour works, see how polarisation can be applied in both scientific fields and every day life, and see how the photon can be used in devices in the increasing prevalent field known as photonics.

View detailed information about this course

Dynamical Phenomena (PX2015) - 15 Credit Points

Understanding oscillatory and wavelike behaviour is of huge importance in comprehending how our natural world works. It seems that everything in nature has its own cycle, rhythm or oscillation. From planets revolving around the sun to waves on the sea, even fundamental particles are treated as waves in modern physics. Accessible to students with some knowledge of calculus, this course will explain the mathematics of this fascinating and important subject. Methods of solving the differential equations that describe waves and oscillatory phenomena will be explored, including numerical techniques.

View detailed information about this course

Modern Programming Languages (CS2510) - 15 Credit Points

This course will introduce the fundamental features of modern programming languages and to equip students with necessary skills for the critical evaluation of existing and future programming languages. Additionally, students study the formal representation of syntax and semantics of programming languages, as well as mechanisms for the lexical and syntactic analysis of programs. Students will be exposed to programming languages from three specific paradigms, namely, object-oriented, functional and logic programming.

View detailed information about this course

Algorithmic Problem Solving (CS2521) - 15 Credit Points

This course provides the knowledge needed to understand, design and compare algorithms. By the end of the course, a student should be able to create or adapt algorithms to solve problems, determine an algorithm's efficiency, and be able to implement it. The course also introduces the student to a variety of widely used algorithms and algorithm creation techniques, applicable to a range of domains. The course will introduce students to concepts such as pseudo-code and computational complexity, and make use of proof techniques as well as the student’s programming skills.

View detailed information about this course

Practical Optics and Electronics (PX2505) - 15 Credit Points

This 100% continuously assessed course explores two fundamental areas of physics. In electronics you will go from building simple circuits to designing complex logical architectures, using both real components and simulation software.

The optics half of the course explores various fascinating optical phenomena, some of which are practically applicable for geologists and many other scientific disciplines. The practicals elegantly demonstrate the fundamental properties of light.

View detailed information about this course

Relativity and Quantum Mechanics (PX2510) - 15 Credit Points

In the 20th Century, Physics got strange, and this course sets out to explore the foundations of this modern approach. In Special Relativity we will look at the idea that time is not an absolute – that events can happen in different times for different observers – and explore the effects of travelling at close to the speed of light. The quantum mechanics section introduces some of the most exciting and dramatically successful science of all time, and discuss the evolution of this idea from the days of Schrodinger’s cat to quantum tunnelling.

View detailed information about this course

Year 3

Year 3

Compulsory Courses

Robotics (CS3027) - 15 Credit Points

This course surveys many of the core problems of robotics, and their solutions. By the end of the course, a student should be able to program robots that move in predictable ways, overcoming environmental uncertainties; that can interpret their surroundings; and that can plan their motion in order to achieve goals. Topics covered include robot motion; image processing and computer vision; localisation methods and computer based search and planning. Apart from using programming skills to implement robot algorithms, the students will learn how to mathematically model robots in order to understand why robot algorithms are designed as they are.

View detailed information about this course

Principles of Software Engineering (CS3028) - 15 Credit Points

Students will develop large commercial and industrial software systems as a team-based effort that puts technical quality at centre stage. The module will focus on the early stage of software development, encompassing team building, requirements specification, architectural and detailed design, and software construction. Groupwork (where each team of students will develop a system selected using a business planning exercise) will guide the software engineering learning process. Teams will be encouraged to have an active, agile approach to problem solving through the guided study, evaluation and integration of practically relevant software engineering concepts, methods, and tools.

View detailed information about this course

Introduction to the Solid State (PX3016) - 15 Credit Points

The course is based on modern views on the structure of solids, how that structure is determined by X-ray crystallography and the basics of structure-property relationships. This involves learning the language of the basic shapes and symmetry displayed by crystals, then using that within the interdisciplinary subject of X-ray crystallography, source of many Nobel prizes and great advance in Physics, Chemistry, Materials Science, Biology and Medicine. The course then briefly examines some key topics including semiconductors, defects and amorphous materials.

View detailed information about this course

Research and Computing Skills (PX3017) - 15 Credit Points

This course introduces mathematical and computational methods. One half is an introduction to programming starting at basics such as variables, loops and conditional statements. This course part is taught in Python, with an emphasis on modern programming concepts and data analysis skills. The other half, taught concurrently, consists of advanced mathematical methods using examples from Physics; for example multivariable calculus and Maxwell's equations, or ODE and partial differential equations in classical and quantum mechanics. There will be a one week career strategies module at the end of the course.

View detailed information about this course

Distributed Systems and Security (CS3524) - 15 Credit Points

This course discusses core concepts of distributed systems, such as programming with distributed objects, multiple threads of control, multi-tire client-server systems, transactions and concurrency control, distributed transactions and commit protocols, and fault-tolerant systems. The course also discusses aspects of security, such as cryptography, authentication, digital signatures and certificates, SSL etc. Weekly practical sessions cover a set of techniques for the implementation of distributed system concepts such as programming with remote object invocation, thread management and socket communication.

View detailed information about this course

Software Engineering and Professional Practice (CS3528) - 15 Credit Points

In this module, which is the follow-up of CS3028, student will focus on the team-based development of a previously specified, designed, and concept-proofed software system. Each team will build their product to industrial-strength quality standards following an agile process and applying the software engineering concepts, methods, and tools introduced in CS3028. The individual learning and practical experience acquisition process will be integrated by talks and seminars given by industrial stakeholders on topics of software engineering relevance, by guided student focus on professional issues, and by student presentations on selected technical topics.

View detailed information about this course

Optional Courses

Select two of the following:

  • Advanced Practical Physics (PX3510)
  • Energy and Matter (PX3508)
  • Structure of Matter and the Universe (PX4510)
Energy and Matter (PX3014) - 15 Credit Points

Our world is made of three types of matter, Solids, Liquids and Gases. The first part of this course will explore the physical properties of these forms of matter and investigate important technological phenomena such as the flow of liquids and the causes of catastrophic failure in mechanical components. In the second half of the course, the nature of heat energy in matter will be explored. Thermodynamic behaviour will be understood in terms of Entropy and the operation of engines and their theoretical efficiency limitations will be explained.

View detailed information about this course

Advanced Practical Physics (PX3510) - 15 Credit Points

Theories of the physical world around us must be consistent with nature. This can be checked by experiment and indeed unexpected experimental results can lead to the development of new theories. This course offers the opportunity to test theories in optics, electromagnetism, thermodynamics and materials science by experiment. You will learn how to carry out experiments, analyse your data and present your results both in writing and verbally. You will get the opportunity to work with Michelson interferometers, venturi meters, sensors, instrumentation and computers. This course supports your physics lectures and prepares you for an experimental scientists work after university.

View detailed information about this course

Structure of Matter and the Universe (PX4510) - 15 Credit Points

The first half of this course provides a detailed understanding of the origin of our Universe and the equations that describe its evolution. The creation of galaxies, stars - their structure, fusion processes and life cycles will be explored along with the formation of the planets. In the second half, the fundamental nature of matter will be investigated and theoretical techniques such as Lagrangians used to understand fields. Gauge field theory as an explanation of the fundamental forces of nature and the standard model will be explained.

View detailed information about this course

Year 4

Year 4

Compulsory Courses

A graduating curriculum for the Honours programme must include 90 credit points from Level 4 courses.

Research Methods (CS4040) - 15 Credit Points

Does this new algorithm improve query performance? Will this protocol ensure our system is robust to attack? How does response time vary with server load? Understanding behaviour – the performance of a task by a computing system in an environment – is critical in both industrial and scientific practice. In this course, you will conduct an individual research project into the behaviour of a computing system. You will develop knowledge and understanding of rigorous methods to: explore computing system behaviour; identify questions about behaviour; design experiments to answer those questions; analyse experimental results; and report on the outcomes of your research.

View detailed information about this course

Computational Intelligence (CS4047) - 15 Credit Points

Computational Intelligence covers a wide range of issues that developed in parallel with, or in competition to, symbolic AI. The major constituents of the field are bio-inspired computing – which deals with an ever expanding number of biologically related techniques – and fuzzy logic – which deals with reasoning under conditions of vagueness. In this course we will explore a number of topics that are core to Computational Intelligence (e.g. neural nets and evolutionary computing) and these will lead into some state-of-the-art approaches (such as fuzzy model-based reasoning and learning).

View detailed information about this course

Case Studies in the Physical Sciences (PX4007) - 15 Credit Points

Whatever career you end up in, group working skills will be critical, and this course is designed to develop them. It is 100% continuously assessed and consists of some initial teamwork training, followed by two very different projects. One explores PET scanning and is taught by Professor Andy Welch, who is in charge of the medical imaging unit at Foresterhill. The other is about fibre optics communications and is taught by Dr. Ross Macpherson. These open-ended projects will give you some less prescriptive assessment in your final year.

View detailed information about this course

Statistical Physics and Stochastic Systems (PX4012) - 15 Credit Points

Statistical physics derives the phenomenological laws of thermodynamics from the probabilistic treatment of the underlying microscopic system. Statistical physics, together with quantum mechanics and the theory of relativity, is a cornerstone in our modern understanding of the physical world.

Through this course, you will gain a better understanding of fundamental physical concepts such as entropy and thermodynamic irreversibility, and you will learn how derive some simple thermodynamic properties of gases and solids.

The final part of the course is devoted to an introduction to stochastic systems, which are widely used in many different fields such as physics, biology and economics.

View detailed information about this course

Modelling Theory (PX4514) - 15 Credit Points

This course was designed to show you what you can do with everything you learnt in your degree. We will use mathematical techniques to describe a fast variety of “real-world” systems: spreading of infectious diseases, onset of war, opinion formation, social systems, reliability of a space craft, patterns on the fur of animals (morphogenesis), formation of galaxies, traffic jams and others. This course will boost your employability and it will be exciting to see how everything you learnt comes together.

View detailed information about this course

Joint Honours Computing - Physics Project (CS4594)

Course Availability

We will endeavour to make all course options available; however, these may be subject to timetabling and other constraints. Please see our InfoHub pages for further information.

How You'll Study

Learning Methods

  • Lectures
  • Research
  • Tutorials

Assessment Methods

Students are assessed by any combination of three assessment methods:

  • coursework such as essays and reports completed throughout the course;
  • practical assessments of the skills and competencies learnt on the course; and
  • written examinations at the end of each course.

The exact mix of these methods differs between subject areas, year of study and individual courses.

Honours projects are typically assessed on the basis of a written dissertation.

Further Information

View detailed learning and assessment information for this programme

How the programme is taught

The typical time spent in scheduled learning activities (lectures, tutorials, seminars, practicals), independent self-study or placement is shown for each year of the programme based on the most popular course choices selected by students.

How the programme is assessed

The typical percentage of assessment methods broken down by written examination, coursework or practical exams is shown for each year of the programme based on the most popular course choices selected by students.

Year 1

Learning Method
scheduled: 25%
independent: 75%
placement: 0%
Assessment
written: 49%
coursework: 51%
practical: 0%

Year 2

Learning Method
scheduled: 24%
independent: 76%
placement: 0%
Assessment
written: 63%
coursework: 37%
practical: 0%

Year 3

Learning Method
scheduled: 27%
independent: 73%
placement: 0%
Assessment
written: 41%
coursework: 59%
practical: 0%

Year 4

Learning Method
scheduled: 16%
independent: 84%
placement: 0%
Assessment
written: 28%
coursework: 69%
practical: 3%

Why Study Computing Science and Physics?

Why Computing

  • Flexible degrees available, including; Single/Joint Honours BSc, MA or MSci degrees.
  • Extra-curricular activities - Studying Computing is not just about programming. We run a variety of social and professional events regularly including; ACM programming Contest, Code The City and Global Service Jam.
  • Aberdeen Software Factory - students get paid to work on client projects as a means to develop their software development skills.
  • We run a hugely successful Computing Student Society, where students socialise and enhance their communication skills, and knowledge of hardware and software.
  • Students are given the opportunity to develop their transferable skills and abilities as independent learners.
  • Prizes for academic excellence are awarded in each year of study. These are sponsored by O’Reilly, the British Computer Society, CGI, EDS and Amazon. Projects are often successfully entered for national competition.
  • Industrial Placements – about 50% of our students took part in placements, receiving very good feedback from the employers.
  • We are a very close knit department of students and staff and you will be given the freedom to develop your skills and learning whilst being supported along the way.
  • Our research expertise in Data Science and Data Analysis is at its strongest when we work in close partnership with other disciplines, such as Physics, Maths, Geography, Health and Biology.
  • The Department of Computing Science is a thriving centre of teaching and research, particularly in areas related to Artificial Intelligence and Knowledge-Based Information Management.

Why Physics

  • The Department of Physics at the University of Aberdeen has a long and illustrious history, and former staff include great physicists such as James Clerk Maxwell and G.P. Thomson.
  • We offer a modern, modular degree structure with a broad syllabus and a wide range of degree choices.
  • Long tradition of teaching physical sciences combined with modern facilities.
  • Emphasis placed on teaching employability and development of generic skills, useful in a wide range of careers.
  • We also offer a broad-based, less mathematical degree in Physical Science that allows the combination of Physics courses with a wide choice of other subjects.
  • Learn from research active, academic staff.
  • We are engaged in a wide range of research areas ranging from the fundamental nature of the universe through to understanding the atomic structure of complex materials and semiconductor device physics.
  • Our graduates go in to a huge range of jobs including; Meteorology, Medical physics, Environmental monitoring, Astronomy, Particle physics, Geophysics, Materials science, Invention Design, Teaching,
    Financial Modelling.

Entry Requirements

Qualifications

The information below is provided as a guide only and does not guarantee entry to the University of Aberdeen.

SQA Highers - AABB*
A Levels - BBB*
IB - 32 points, 5 at HL*
ILC - 5H with 3 at H2 AND 2 at H3 OR AAABB, obtained in a single sitting. (B must be at B2 or above)*

*SQA Higher or GCE A Level or equivalent at grade B or above in Mathematics and Physics are required.

Advanced Entry - Advanced Highers ABB or A Levels ABB, or IB 34 points (6 at HL), including a science subject and preferably Mathematics

Further detailed entry requirements for Sciences degrees.

English Language Requirements

To study for a degree at the University of Aberdeen it is essential that you can speak, understand, read, and write English fluently. Read more about specific English Language requirements here.

Fees and Funding

You will be classified as one of the fee categories below.

Fee Waiver

For international students (all non-EU students) entering in 2017/18, the 2017/18 tuition fee rate will apply to all years of study; however, most international students will be eligible for a fee waiver in their final year via the International Undergraduate Scholarship.

Most RUK students (England, Wales and Northern Ireland) on a four year honours degree will be eligible for a full-fees waiver in their final year. Scholarships and other sources of funding are also available.

Fee information
Fee category Cost
Home / EU £1,820
All Students
RUK £9,250
Students Admitted in 2018/19 Academic Year
International Students £18,400
Students Admitted in 2018/19 Academic Year

Additional Fees

  • In exceptional circumstances there may be additional fees associated with specialist courses, for example field trips. Any additional fees for a course can be found in our Catalogue of Courses.
  • For more information about tuition fees for this programme, including payment plans and our refund policy, please visit our InfoHub Tuition Fees page.

Our Funding Database

View all funding options in our Funding Database.

Careers

There are many opportunities at the University of Aberdeen to develop your knowledge, gain experience and build a competitive set of skills to enhance your employability. This is essential for your future career success. The Careers Service can help you to plan your career and support your choices throughout your time with us, from first to final year – and beyond.

Our Experts

Information About Staff Changes

You will be taught by a range of experts including professors, lecturers, teaching fellows and postgraduate tutors. Staff changes will occur from time to time; please see our InfoHub pages for further information.

Features

Image for Aberdeen Software Factory
Aberdeen Software Factory

Aberdeen Software Factory

The Aberdeen Software Factory is a student-run software house. Students can gain experience working on larger software projects and benefit from work experience, while clients will benefit from a flexible, cost effective solution to suit their needs.

Find out more
Image for Learn from world-class experts
Learn from world-class experts

Learn from world-class experts

Example - Congratulations to Professor Norval Strachan, Head of Physics at the University of Aberdeen, who has been appointed as Food Standards Scotland's first Chief Scientific Adviser.

Find out more
Image for Computing Placements
Computing Placements

Computing Placements

Placements are encouraged and available within a range of computing firms - summer months, between second and third year, or between third and fourth year.

Unistats

Unistats draws together comparable information in areas students have identified as important in making decisions about what and where to study. You can compare these and other data for different degree programmes in which you are interested.

Get in Touch

Contact Details

Address
Student Recruitment & Admissions Service
University of Aberdeen
University Office
Regent Walk
Aberdeen
AB24 3FX