Sustainable Energy Geoscience, MSc

Sustainable Energy Geoscience, MSc


Sustainable energy is a rapidly developing area of research and technological innovation in the UK. Geothermal energy and carbon capture and storage (CCS), in particular, are central components of the UK government’s strategy for reducing greenhouse emissions and reaching net-zero by 2050.

This programme draws on the exceptional expertise within the Department of Geology and Geophysics to equip students with the subsurface skills required for the rapidly evolving energy transition sector.

Study Information

At a Glance

Learning Mode
On Campus Learning
Degree Qualification
12 months
Study Mode
Full Time
Start Month
Location of Study

Our understanding of subsurface workflows and resources is critical to many of the new clean energy technologies associated with the energy transition, such as geothermal energy, carbon capture storage and the growing demand for critical minerals needed to produce clean technologies such as wind turbines, batteries and electric vehicles.

At the heart of this programme is a focus on developing a strong technical understanding of rocks and fluids in the subsurface, and how to model, monitor and verify their presence using geophysical, petrophysical and other techniques. This knowledge is then applied to a wide range of low carbon energy solutions including sustainable mineral extraction, geothermal flow and subsurface storage.

We place a strong focus on geoscience interpretation and the high-demand skills needed for both present-day and future energy extraction and storage scenarios. In addition, you will examine the societal implications of the energy transition, including social justice, global dynamics and sustainability goals.

This MSc draws on much of the ground-breaking research being conducted within the Centre for Energy Transition (CET), in areas such as geothermal energy, carbon capture and storage, nuclear waste storage and critical materials for the energy transition.

Watch a sample lecture by Dr Rachel Brackenridge on How Geoscientists can Contribute to the Energy Transition.

What You'll Study

Semester 1

Semester 1

Compulsory Courses
Geophysics and Petrophysics (GL5011)

30 Credit Points

By the end of this course, the student should:

  • Understand the Petrophysical rock properties that affect fluid storage and movement (Porosity, Permeability, Saturation, Mineralogy).
  • Understand the primary wireline and LWD logging tools: Measurement, Fundamental physical principles, and applications.
  • Understand the theory of seismic signal description.
  • Appreciate the main processes involved in a typical seismic data-processing suite.
  • Understand the basic concepts of seismic stratigraphy and the interpretation of seismic data.
View detailed information about this course
Applied Sedimentology and Structural Geology (GL5044)

30 Credit Points

The course aims to develop practical geological skills applicable to the hydrocarbons industry, embracing the subdisciplines of tectonics and structural geology together within clastic and carbonate sedimentology, stratigraphy, and diagenesis; The main basin-forming processes with be introduced to provide context for the sedimentary geology. The basics of structural geology for trap definition and characterisation are developed and applied, deducing structural styles on seismic images and examples of how deformation influences reservoir behavior and trapping mechanisms. The course will show how structural, sedimentological and stratigraphic knowledge is crucial in both exploration and development activities, and is fundamental in making predictive models. It will impart a practical knowledge of depositional environments which form hydrocarbon reservoirs, linking these together using the techniques of sequence stratigraphy as applied to siliciclastic and carbonate settings. The origin and effects of reservoir fluids and subsequent diagenesis will also be covered.

View detailed information about this course
Professional Skills Incorporating International Field Trip (GL5013)

15 Credit Points

By the end of this course, students will be aware of issues in relation to team work, particularly communication, diversity, and organisation. They will be able to communicate technical interpretation effectively by oral, written and electronic methods. They will utilise knowledge gained in the field and classroom to complete a number of industry-facing tasks through assessments based on real life scenarios utilising field-based data and concepts derived from lectures and field observations. These skills will be developed on two fieldtrips, one of which will focus on the exceptional geology exposed in Utah.

View detailed information about this course
Semester 2

Semester 2

Compulsory Courses

Earth's Energy Resources
This course aims to provide students with a good grounding in the role that geoscientists and subsurface specialists will play in the drive to netzero. The course will focus on different resources the Earth can provide to support the energy transition, particularly critical minerals to support electrification. There will be a strong focus on the sustainable, ethical and just using these resources and their importance for integrated energy systems.

Geothermal Flow
This course will give students the knowledge and expertise to understand fluid flow in the subsurface, with a focus on Geothermal heat and energy systems. The course will cover geoscience aspects of utilising: (1) low enthalpy ground-source heating and cooling (pumps within shallow aquifers and mine workings), (2) high enthalpy geothermal (hydrothermal) systems, both in sedimentary basins and in active volcanic areas. The environmental, political/social, and economic aspects of geothermal energy.

Subsurface Energy Storage & Sequestration
This course will allow students to de-risk the subsurface for storage of energy (from renewable sources in the form of compressed air and hydrogen), and for the safe and long-term sequestration of CO2. Storage within porous rocks, evaporites and volcanics will be covered. The use of subsurface storage and sequestration as part of integrated energy systems in net zero basins will examined, and economic models for their success.

Semester 3

Semester 3

Compulsory Courses
Projects in Integrated Petroleum Geoscience (GL5907)

60 Credit Points

In the final project you are expected to undertake and complete a study of a problem applicable to the petroleum industry. The project is an extended, independent, self-directed, piece of practical work integrating and reinforcing the material taught on the course, and giving a detailed insight into the demands of, and ways of working in the hydrocarbon industry. The project forms the major part of the IPG’s employability strategy.

View detailed information about this course

We will endeavour to make all course options available; however, these may be subject to timetabling and other constraints. Please see our InfoHub pages for further information.

How You'll Study

Learning Methods

  • E-learning
  • Field Trips
  • Field Work
  • Group Projects
  • Individual Projects
  • Lectures
  • Research
  • Seminars

Why Study Sustainable Energy Geoscience?

  • Aberdeen is regarded as a world-leading hub for energy expertise, with organisations such as the Centre for Energy Transition, the Net Zero Technology Centre, the Energy Transition Zone, the National Decommissioning Centre and the Global Underwater Hub deploying the tremendous R&D expertise built up over the last 40 years in oil and gas to fast track the development and deployment of wind, tidal, hydrogen, geothermal, and carbon capture storage technologies.
  • This MSc draws on much of the ground-breaking research being conducted within the Centre for Energy Transition and the Department of Geology and Geophysics, in our doctoral training programmes in QUADRAT and the GeoNetZero CDT and through Scottish Carbon Capture and Storage, ClimateXChange, and UKRI funding and industry partnerships.
  • Field-based study is a crucial part of the teaching on all our geology-related degrees. This programme is no exception, offering a one-week field trip in the UK in Semester 1 and a two-week trip to Utah in Semester 2.
  • Learn from industry experts, who bring with them the latest industry trends and techniques to ensure that what you learn on this programme is relevant to the needs of industry today.
  • Complete an MSc Project dissertation on a topic of your choosing and directly contribute to research in this rapidly evolving and emerging industry.
  • You will have access to the School of Geoscience’s world-class facilities and equipment and laboratories, including 3D Seismic Interpretation Facilities; ACEMAC Nano Scale Electron Microscopy and Analysis Facility; Dirty and Clean Sedimentary Laboratories; Geochemistry Laboratory; GIS Equipment; Hydrology Laboratory; Petrographic and Stereomicroscopes; Petrophysics Laboratory.
  • The School of Geosciences is at the forefront of developing the latest digital technology. V3 Geo, for example, has been developed by Aberdeen geoscientists and is a bespoke public repository and viewer for 3D virtual geoscience models, with a focus on virtual geological outcrops.
  • You will learn and communicate with specialists from other disciplines, in particular those involved in drilling, reservoir engineering, petrophysics, geochemistry, and geophysics.
  • You will enhance your interpersonal and transferable skills relevant to the energy industry today: developing presentation and report-writing skills; working in multidisciplinary teams; creative thinking and problem-solving abilities.

Entry Requirements


The information below is provided as a guide only and does not guarantee entry to the University of Aberdeen.

Our minimum entry requirement for this programme is a Geology or Geophysics degree at 2:1 (upper second class) UK Honours level (or an Honours degree from a non-UK institution which is judged by the University to be of equivalent worth).

Evidence of high marks in the following key subjects is important for admission: Evidence of creative thinking, data synthesis, teamwork, problem-solving. As well as key technical geological skills.

Please enter your country to view country-specific entry requirements.

English Language Requirements

To study for a Postgraduate Taught degree at the University of Aberdeen it is essential that you can speak, understand, read, and write English fluently. The minimum requirements for this degree are as follows:

IELTS Academic:

OVERALL - 6.5 with: Listening - 5.5; Reading - 5.5; Speaking - 5.5; Writing - 6.0


OVERALL - 90 with: Listening - 17; Reading - 18; Speaking - 20; Writing - 21

PTE Academic:

OVERALL - 62 with: Listening - 59; Reading - 59; Speaking - 59; Writing - 59

Cambridge English B2 First, C1 Advanced, C2 Proficiency:

OVERALL - 176 with: Listening - 162; Reading - 162; Speaking - 162; Writing - 169

Read more about specific English Language requirements here.

Document Requirements

You will be required to supply the following documentation with your application as proof you meet the entry requirements of this degree programme. If you have not yet completed your current programme of study, then you can still apply and you can provide your Degree Certificate at a later date.

Degree Transcript
a full transcript showing all the subjects you studied and the marks you have achieved in your degree(s) (original & official English translation)
Personal Statement
a detailed personal statement explaining your motivation for this particular programme

Fee Information

Fee information
Fee category Cost
EU / International students £28,764
Tuition Fees for 2022/23 Academic Year
Home / RUK £12,800
Tuition Fees for 2022/23 Academic Year

Additional Fee Information

  • In exceptional circumstances there may be additional fees associated with specialist courses, for example field trips. Any additional fees for a course can be found in our Catalogue of Courses.
  • For more information about tuition fees for this programme, including payment plans and our refund policy, please visit our InfoHub Tuition Fees page.

Funding Opportunities

The following options are available to support your studies.

  • NEO Energy Postgraduate Scholarship - Energy firm NEO Energy is offering 2 scholarships worth £20k each for Home/UK students commencing an energy-related postgraduate degree, including our MSc Sustainable Energy Geoscience programme. Application deadline is Wednesday 24 August 2022.


Eligible self-funded international Masters students will receive the Aberdeen Global Scholarship. Visit our Funding Database to find out more and see our full range of scholarships.


The MSc Sustainable Energy Geoscience aims to equip students with the subsurface skills required for the rapidly evolving energy transition sector across multiple themes relating to energy extraction and storage. The skills-based approach will also prepare students for complementary roles such as data analytics and policy.

Energy companies are diversifying their portfolios to include low carbon energies and technologies such as offshore wind, hydrogen and carbon capture and storage. A number of large-scale low carbon projects are now underway in the UK and around the World, and projects are expected to expand as we move towards a net-zero economy. The UK government expects 220,000 positions will be required to support the energy transition in the UK over the next 10 years.

Our Experts

Other Experts
Professor Adrian Hartley
Dr Tavis Potts
Dr Clare Elizabeth Bond
Programme Coordinator
Dr Rachel Brackenridge

Information About Staff Changes

You will be taught by a range of experts including professors, lecturers, teaching fellows and postgraduate tutors. Staff changes will occur from time to time; please see our InfoHub pages for further information.

Get in Touch

Contact Details

Student Recruitment & Admissions
University of Aberdeen
University Office
Regent Walk
AB24 3FX