Nonlinear impact systems in the game of hurling. Analyses, numerics and experiments

Nonlinear impact systems in the game of hurling. Analyses, numerics and experiments
-

This is a past event

High-speed mechanical impacts between non-linear materials are particularly difficult to model due to the rapidly time-varying behaviour of the non-linear materials during impact. This is particularly the case where one or both of materials involved in the impact are natural in origin and therefore subject to the variations in material properties inherent in non-artificial materials

High-speed mechanical impacts between non-linear materials are particularly difficult to model due to the rapidly time-varying behaviour of the non-linear materials during impact. This is particularly the case where one or both of materials involved in the impact are natural in origin and therefore subject to the variations in material properties inherent in non-artificial materials. Here, an experimentally verified methodologies for the modelling of these types of impacts is presented. It considers, in particular, the material set of ash wood and rubber in the context of the impact between the bat (the “hurley” made of ash wood) and the ball (the “sliotar” made of polyurethane-cork composite) in the Irish game of hurling.

For the theoretical approach, modified Maxwell and Kelvin-Voigt’s viscoelastic models were used to derive an analytical formula to predict the sliotar’s restitution and the sliotar-hurley impact. Moreover, a transient nonlinear three-dimensional finite element (FE) model was developed to simulate the sliotar-hurley impact, and to provide a simple tool for further studies on such impact.

Finally, a high-speed camera was used to film the impact events to validate the models behaviour, where a designed 32 experimental impacts were carried out covering a range of sliotar and hurley brands, impact locations and impact speeds. The success of the modelling methodology in this challenging application suggests that it can be readily extended to analogous impacts involving other nonlinear materials impact.

Speaker
Dr. Amjad Alsakarneh
Hosted by
CADR
Venue
FN115