Introduction

There has never been a more exciting time to study Mathematics and Physics. Our 4th Industry Revolution is bringing incredibly exciting innovations. Traditionally Mathematics supported design of roads, aeroplanes, pharmaceuticals, renewables, meteorology, banking, statistics, and more. Combined with Physics you can innovate in signal processing (IOT), medical devices, instrumentation, software, quantum technologies, autonomous vehicles, quantum computing, artificial intelligence and more.

This programme is studied on campus.

Mathematics is the language of physics and the two are very closely connected. It is the means by which theories of Physics are described and how the complex mathematical relations between force fields, matter and light are expressed. Advanced Mathematics looks at Calculus, Algebra, Probability, Analysis, Theories, and Modelling to give you a solid grounding in advanced applications of Mathematics. These are directly applicable to a lot of new Industry 4.0 applications and traditional areas of business which are now evolving and requiring new applications of Mathematics and Physics.

For Physicists working at the frontiers of modern physics, there is a great need to be able to understand advanced mathematical techniques to apply to the latest industry needs in high growth application areas. The subject is so diverse it can apply to the theoretical and the physical such as Quantum Mechanical Engineering, Optics, Electricity and Magnetism and Signal Processing, to advanced Computing. Industry 4.0 has pushed traditional computing needs into 'Big Data' and an interplay between signalling circuits, engineering and IOT behind much of our modern advances in sensor technology, smart devices and their application.

This degree has a 50% component of Mathematics and 50% component of Physics and is ideal for the more mathematically-minded physicists. There has never been a more exciting time to advance STEM subjects to solve major questions and improve our everyday life and work.

Degree marketing image

Key Programme Information

At a Glance

Learning Mode
On Campus Learning
Degree Qualification
BSc
Duration
48 months
Study Mode
Full Time
Start Month
September
UCAS Code
FG31

What You'll Study

Year 1

Year 1

Compulsory Courses

Professional Skills Part 1 (PD1001)

This course, which is prescribed for level 1 students and optional for level 2 students, is studied entirely online and covers topics relating to careers and employability, equality and diversity and health, safety and wellbeing. During the course you will learn about the Aberdeen Graduate Attributes, how they are relevant to you and the opportunities available to develop your skills and attributes alongside your University studies. You will also gain an understanding of equality and diversity and health, safety and wellbeing issues. Successful completion of this course will be recorded on your Enhanced Transcript as ‘Achieved’ (non-completion will be recorded as ‘Not Achieved’). The course takes approximately 3 hours to complete and can be taken in one sitting, or spread across a number of weeks and it will be available to you throughout the academic year.This course, which is prescribed for level 1 students and optional for level 2 students and above, is studied entirely online and covers topics relating to careers and employability, equality and diversity and health, safety and wellbeing. During the course you will learn about the Aberdeen Graduate Attributes, how they are relevant to you and the opportunities available to develop your skills and attributes alongside your University studies. You will also gain an understanding of equality and diversity and health, safety and wellbeing issues. Successful completion of this course will be recorded on your Enhanced Transcript as ‘Achieved’ (non-completion will be recorded as ‘Not Achieved’). The course takes approximately 3 hours to complete and can be taken in one sitting, or spread across a number of weeks and it will be available to you throughout the academic year

View detailed information about this course

Calculus i (MA1005) - 15 Credit Points

Calculus is the mathematical study of change, and is used in many areas of mathematics, science, and the commercial world. This course covers differentiation, limits, finding maximum and minimum values, and continuity. There may well be some overlap with school mathematics, but the course is brisk and will go a long way quickly.

View detailed information about this course

Algebra (MA1006) - 15 Credit Points

This course introduces the concepts of complex numbers, matrices and other basic notions of linear algebra over the real and complex numbers. This provides the necessary mathematical background for further study in mathematics, physics, computing science, chemistry and engineering.

View detailed information about this course

The Physical Universe A (PX1015) - 15 Credit Points

Physics is the most fundamental of the sciences, and if we wish to better understand the nature and behaviour of the Universe, it is perhaps the best place to start. This course introduces the basic topics of Physics, from the sub-microscopic scale of electrons and atoms, to the orbits of the planets and stars, to the celestial mechanics of galaxies. It encompasses the work of Physicists like Isaac Newton, Albert Einstein, Marie Curie and Jocelyn Bell Burnell. If you’ve ever been curious about how the world works, you will hopefully find this course, typically well-regarded by students, interesting.

View detailed information about this course

Calculus II (MA1508) - 15 Credit Points

The aim of the course is to provide an introduction to Integral Calculus and the theory of sequences and series, to discuss their applications to the theory of functions, and to give an introduction to the theory of functions of several variables.

This provides the necessary mathematical background for further study in mathematics, physics, computing science, chemistry and engineering.

View detailed information about this course

Set Theory (MA1511) - 15 Credit Points

Set theory was introduced by Cantor in 1872, who was attempting to understand the concept of "infinity" which defied the mathematical world since the Greeks. Set Theory is fundamental to modern mathematics - any mathematical theory must be formulated within the framework of set theory, or else it is deemed invalid. It is the alphabet of mathematics.

In this course we will study naive set theory. Fundamental object such as the natural numbers and the real numbers will be constructed. Structures such as partial orders and functions will be studied. And of course, we will explore infinite sets.

View detailed information about this course

The Physical Universe B (PX1513) - 15 Credit Points

Understanding electric and magnetic forces is of paramount importance for understanding the physical world. They are eventually responsible for the matter around us to self-organize (in solid, liquid and gas phases), with given structures, density, elastic properties, and so on. Furthermore, they are responsible for light emission and propagation across the space.

Already the first rudiments of electricity and magnetism will help to appreciate that they are two difference faces of the same coin: electromagnetism. This relationship is the first evidence of the possibility to build a unified description of the microscopic laws of the physical universe.

View detailed information about this course

Optional Courses

  • Select a further 30 credit points from courses of choice
Year 2

Year 2

Compulsory Courses

Linear Algebra i (MA2008) - 15 Credit Points

Linear algebra is the study of vector spaces and linear maps between them and it is a central subject within mathematics.

It provides foundations for almost all branches of mathematics and sciences in general. The techniques are used in engineering, physics, computer science, economics and others. For example, special relativity and quantum mechanics are formulated within the framework of linear algebra.

The two courses Linear Algebra I and II aim at providing a solid foundation of the subject.

View detailed information about this course

Analysis i (MA2009) - 15 Credit Points

Analysis provides the rigourous, foundational underpinnings of calculus. It is centred around the notion of limits: convergence within the real numbers. Related ideas, such as infinite sums (a.k.a. series), continuity, and differentiation, are also visited in this course. Care is needed to properly use the delicate formal concept of limits. At the same time, limits are often intuitive, and we aim to reconcile this intuition with correct mathematical reasoning. The emphasis throughout this course is on rigourous mathematical proofs, valid reasoning, and the avoidance of fallacious arguments.

View detailed information about this course

Light Science (PX2013) - 15 Credit Points

For most of us, our perceptions are governed most strongly by our vision. We see because of light, but what is light? It’s been considered a particle, a wave, and in modern physics is somehow both. This course explores the fascinating physics of this phenomenon, at an elementary mathematical level suitable for non-science students. We’ll cover petrological microscopy, of interest to geologists, interference and diffraction, how colour works, see how polarisation can be applied in both scientific fields and every day life, and see how the photon can be used in devices in the increasing prevalent field known as photonics.

View detailed information about this course

Dynamical Phenomena (PX2015) - 15 Credit Points

Understanding oscillatory and wavelike behaviour is of huge importance in comprehending how our natural world works. It seems that everything in nature has its own cycle, rhythm or oscillation. From planets revolving around the sun to waves on the sea, even fundamental particles are treated as waves in modern physics. Accessible to students with some knowledge of calculus, this course will explain the mathematics of this fascinating and important subject. Methods of solving the differential equations that describe waves and oscillatory phenomena will be explored, including numerical techniques.

View detailed information about this course

Linear Algebra II (MA2508) - 15 Credit Points

Linear algebra is the study of vector spaces and linear maps between them and it is a central subject within mathematics.

It provides foundations for almost all branches of mathematics and sciences in general. The techniques are used in engineering, physics, computer science, economics and others. For example, special relativity and quantum mechanics are formulated within the framework of linear algebra.

The two courses Linear Algebra I and II aim at providing a solid foundation of the subject.

View detailed information about this course

Analysis II (MA2509) - 15 Credit Points

Analysis provides the rigourous, foundational underpinnings of calculus. This course builds on the foundations in Analysis I, and explores the notions of Riemann integrability, Cauchy sequences, sequences of functions, and power series. The techniques of careful rigourous argument seen in Analysis I will be further developed. Such techniques will be applied to solve problems that would otherwise be inaccessible. As in Analysis I, the emphasis of this course is on valid mathematical proofs and correct reasoning.

View detailed information about this course

Relativity and Quantum Mechanics (PX2510) - 15 Credit Points

In the 20th Century, Physics got strange, and this course sets out to explore the foundations of this modern approach. In Special Relativity we will look at the idea that time is not an absolute – that events can happen in different times for different observers – and explore the effects of travelling at close to the speed of light. The quantum mechanics section introduces some of the most exciting and dramatically successful science of all time, and discuss the evolution of this idea from the days of Schrodinger’s cat to quantum tunnelling.

View detailed information about this course

Optional Courses

  • Select a further 15 credit points from courses of choice
Year 3

Year 3

Compulsory Courses

Group Theory (MX3020) - 15 Credit Points

Group theory concerns the study of symmetry. The course begins with the group axioms, which provide an abstract setting for the study of symmetry. We proceed to study subgroups, normal subgroups, and group actions in various guises. Group homomorphisms are introduced and the related isomorphism theorems are proved. Composition series are introduced and the Jordan-Holder theorem is proved. Sylow p-subgroups are introduced and the three Sylow theorems are proved. Throughout symmetric groups are consulted as a source of examples.

View detailed information about this course

Analysis Iii (MX3035) - 15 Credit Points

Analysis provides the rigourous, foundational underpinnings of calculus. The focus of this course is multivariable analysis, building on the single-variable theory from MA2009 Analysis I and MA2509 Analysis II. Concepts and results around multivariable differentiation are comprehensively established, laying the ground for multivariable integration in MX3535 Analysis IV. As in Analysis I and II, abstract reasoning and proof-authoring are key skills emphasised in this course.

View detailed information about this course

Energy and Matter (PX3014) - 15 Credit Points

Our world is made of three types of matter, Solids, Liquids and Gases. The first part of this course will explore the physical properties of these forms of matter and investigate important technological phenomena such as the flow of liquids and the causes of catastrophic failure in mechanical components. In the second half of the course, the nature of heat energy in matter will be explored. Thermodynamic behaviour will be understood in terms of Entropy and the operation of engines and their theoretical efficiency limitations will be explained.

View detailed information about this course

Research and Computing Skills (PX3017) - 15 Credit Points

This course introduces mathematical and computational methods. One half is an introduction to programming starting at basics such as variables, loops and conditional statements. This course part is taught in Python, with an emphasis on modern programming concepts and data analysis skills. The other half, taught concurrently, consists of advanced mathematical methods using examples from Physics; for example multivariable calculus and Maxwell's equations, or ODE and partial differential equations in classical and quantum mechanics. There will be a one week career strategies module at the end of the course.

View detailed information about this course

Analysis Iv (MX3535) - 15 Credit Points

Analysis provides the rigourous, foundational underpinnings of calculus. This course builds on MX3035 Analysis III, continuing the development of multivariable calculus, with a focus on multivariable integration. Hilbert spaces (infinite dimensional Euclidean spaces) are also introduced. Students will see the benefit of having acquired the formal reasoning skills developed in Analysis I, II, and III, as it enables them to work with increasingly abstract concepts and deep results. Techniques of rigourous argumentation continue to be a prominent part of the course.

View detailed information about this course

Quantum Mechanics (PX3511) - 15 Credit Points

The course aims to provide the students with the underpinning knowledge that will enable them to think constructively about phenomena that relate to the quantum structure of matter. It is intended that the students will gain a broad appreciation of the hierarchy of interactions that give rise to the energy levels of atoms and the consequent structure of the associated spectroscopic transitions. In comparison to the previous years more emphasis will be put on the general, mathematical structure of quantum theory, tackling topics such as Hilbert spaces and time independent perturbation theory.

View detailed information about this course

Electricity and Magnetism (PX3512) - 15 Credit Points

We are surrounded by electromagnetic phenomena; it is not possible to understand the physical world without them. In this course we will discuss the link between electricity and magnetism, noticing that changing electric magnetic fields generate electric fields and the other way around. This will lead to the introduction of Faraday’s law, hugely relevant to understand how we generate electricity, and to the introduction of Maxwell’s correction to Ampere’s law, which will lead to the astounding result that light is an electromagnetic wave! We will finish the course by exploring how electromagnetic waves propagate and how they are originated.

View detailed information about this course

Optional Courses

  • Select EITHER Rings and Fields (MX3531) OR Differential Equations (MX3536)
Rings and Fields (MX3531) - 15 Credit Points

Many examples of rings will be familiar before entering this course. Examples include the integers modulo n, the complex numbers and n-by-n matrices with real entries. The course develops from the fundamental definition of ring to study particular classes of rings and how they relate to each other. We also encounter generalisations of familiar concepts, such as what is means for a polynomial to be prime.

View detailed information about this course

Differential Equations (MX3536) - 15 Credit Points

Differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology. In this course we will study the concept of a differentialk equation systematically from a purely mathematical viewpoint. Such abstraction is fundamental to the understanding of this concept.

View detailed information about this course

Year 4

Year 4

Compulsory Courses

Project A (PX4011) - 30 Credit Points

PX4011 provides the opportunity to carry out an independent, open-ended, piece of research work. This can be in an area of physics (astronomy, nuclear physics, superconductors, dynamical systems etc.) or in related subjects where physicists tools can be applied (generation of proteins, biomechanics, infectious diseases etc.). The project can be dissertation based, practical or computational. You will develop: presentation skills; experience of reading and thinking about a specialist topic in depth; critical analysis skills of your own and other people’s scientific work and project management skills. This will help prepare for your future career beyond university.

View detailed information about this course

Statistical Physics and Stochastic Systems (PX4012) - 15 Credit Points

Statistical physics derives the phenomenological laws of thermodynamics from the probabilistic treatment of the underlying microscopic system. Statistical physics, together with quantum mechanics and the theory of relativity, is a cornerstone in our modern understanding of the physical world.

Through this course, you will gain a better understanding of fundamental physical concepts such as entropy and thermodynamic irreversibility, and you will learn how derive some simple thermodynamic properties of gases and solids.

The final part of the course is devoted to an introduction to stochastic systems, which are widely used in many different fields such as physics, biology and economics.

View detailed information about this course

Complex Analysis (MX4557) - 15 Credit Points

This course asks what happens when concepts such as convergence of sequences and series, continuity and differentiability, are applied in the complex plane? The results are much more beautiful, and often, surprisingly, simpler, than over the real numbers. This course also covers contour integration of complex functions, which has important applications in Physics and Engineering.

View detailed information about this course

Optional Courses

  • Select a further 45 credit points from level 4 Mathematics courses

Course Availability

We will endeavour to make all course options available; however, these may be subject to timetabling and other constraints. Please see our InfoHub pages for further information.

How You'll Study

Learning Methods

  • Individual Projects
  • Lectures
  • Research
  • Tutorials

Assessment Methods

Students are assessed by any combination of three assessment methods:

  • coursework such as essays and reports completed throughout the course;
  • practical assessments of the skills and competencies learnt on the course; and
  • written examinations at the end of each course.

The exact mix of these methods differs between subject areas, year of study and individual courses.

Honours projects are typically assessed on the basis of a written dissertation.

Why Study Mathematics and Physics?

Why Mathematics

  • We offer a challenging syllabus which emphasises reasoning, rigour and the argumentative side of mathematics.
  • Our ambition is to give you a sound preparation for a career in which mathematics plays a role, whether it be in research or through applications.
  • We offer excellent student experience delivered by enthusiastic staff combined with small class sizes, approximately 25 or less in the Honours years.
  • We offer a degree in Pure Mathematics and degree in Applied Mathematics to suit your taste and interests. You will only need to make the choice in your 3rd year.
  • We offer a range of choices with your degree programme, across both the sciences (BSc) and the Arts (MA). You can focus your attention entirely on Mathematics or you can spread your interests to combine it with other subjects.
  • We offer attractive joint degrees with Economics, Physics and other disciplines, including languages.
  • The department run a number of key events and seminars throughout the year, giving you the chance to network with students and academics.
  • Interactions with applied maths are fostered through our involvement in the Institute for Pure and Applied Mathematics, comprised of the Department of Mathematics together with the Institute for Complex Systems and Mathematical Biology.

Why Physics

  • The Department of Physics at the University of Aberdeen has a long and illustrious history, and former staff include great physicists such as James Clerk Maxwell and G.P. Thomson.
  • We offer a modern, modular degree structure with a broad syllabus and a wide range of degree choices.
  • Long tradition of teaching physical sciences combined with modern facilities.
  • Emphasis placed on teaching employability and development of generic skills, useful in a wide range of careers.
  • We also offer a broad-based, less mathematical degree in Physical Science that allows the combination of Physics courses with a wide choice of other subjects.
  • Learn from research active, academic staff.
  • We are engaged in a wide range of research areas ranging from the fundamental nature of the universe through to understanding the atomic structure of complex materials and semiconductor device physics.
  • Our graduates go in to a huge range of jobs including; Meteorology, Medical physics, Environmental monitoring, Astronomy, Particle physics, Geophysics, Materials science, Invention Design, Teaching,
    Financial Modelling.

Entry Requirements

Qualifications

SQA Highers - AABB*
A Levels - BBB*
IB - 32 points, including 5,5,5 at HL*
ILC - 5H with 3 at H2 AND 2 at H3 OR AAABB, obtained in a single sitting. (B must be at B2 or above)*

*SQA Higher or GCE A Level or equivalent qualification in Mathematics and Physics are required.

Advanced entry - is considered on an individual basis depending on prior qualifications and experience. Applicants wishing to be considered for Advanced entry should contact directly the Director of Studies (Admissions) at our Recruitment and Admissions office.

Further detailed entry requirements for Sciences degrees.

English Language Requirements

To study for a degree at the University of Aberdeen it is essential that you can speak, understand, read, and write English fluently. Read more about specific English Language requirements here.

Fees and Funding

You will be classified as one of the fee categories below.

Fee Waiver

For international students (all non-EU students) entering in 2017/18, the 2017/18 tuition fee rate will apply to all years of study; however, most international students will be eligible for a fee waiver in their final year via the International Undergraduate Scholarship.

Most RUK students (England, Wales and Northern Ireland) on a four year honours degree will be eligible for a full-fees waiver in their final year. Scholarships and other sources of funding are also available.

Fee information
Fee category Cost
Home / EU £1,820
All Students
RUK £9,250
Students Admitted in 2018/19 Academic Year
International Students £18,400
Students Admitted in 2018/19 Academic Year

Additional Fees

  • In exceptional circumstances there may be additional fees associated with specialist courses, for example field trips. Any additional fees for a course can be found in our Catalogue of Courses.
  • For more information about tuition fees for this programme, including payment plans and our refund policy, please visit our InfoHub Tuition Fees page.

Our Funding Database

View all funding options in our Funding Database.

Undergraduate Open Day

Our next Open Day will be on

Find out More

Careers

There are many opportunities at the University of Aberdeen to develop your knowledge, gain experience and build a competitive set of skills to enhance your employability. This is essential for your future career success. The Careers Service can help you to plan your career and support your choices throughout your time with us, from first to final year – and beyond.

Our Experts

Information About Staff Changes

You will be taught by a range of experts including professors, lecturers, teaching fellows and postgraduate tutors. Staff changes will occur from time to time; please see our InfoHub pages for further information.

Features

Image for Learn from world-class experts
Learn from world-class experts

Learn from world-class experts

Example - Congratulations to Professor Norval Strachan, Head of Physics at the University of Aberdeen, who has been appointed as Food Standards Scotland's first Chief Scientific Adviser.

Find out more
Image for Sir Duncan Rice Library
Sir Duncan Rice Library

Sir Duncan Rice Library

The University’s award winning Sir Duncan Rice Library is listed in the “Top 20 spellbinding University libraries in the World”. It contains over a million volumes, more than 300,000 e-books and 21,000 journals.

Find out more

Key Information Set (KIS)

Unistats draws together comparable information in areas students have identified as important in making decisions about what and where to study. The core information it contains is called the Key Information Set.

You can compare these and other data for different degree programmes in which you are interested.

Get in Touch

Contact Details

Address
Student Recruitment & Admissions Service
University of Aberdeen
University Office
Regent Walk
Aberdeen
AB24 3FX