Introduction

Understand the relationship between the Physical Sciences whilst studying languages.

This programme is studied on campus.

For many scientists, Physics is an international subject with conferences and collaborations going on around the world. Multinational companies such as BP and British Aerospace who employ many scientist also expect their employees to function not just in the UK, but all around the word. The ability to communicate complex ideas in this environment is vital and for Physicists who see their future in this international environment, we have a degree of Physics (75%) with a modern language (25%).

A choice of language is available, from French, Spanish, Gaelic or German.

Degree marketing image

Key Programme Information

At a Glance

Learning Mode
On Campus Learning
Degree Qualification
BSc
Duration
48 months
Study Mode
Full Time
Start Month
September
UCAS Code
F3R4

What You'll Study

Year 1

Year 1

Compulsory Courses

Professional Skills Part 1 (PD1001)

This course, which is prescribed for level 1 students and optional for level 2 students, is studied entirely online and covers topics relating to careers and employability, equality and diversity and health, safety and wellbeing. During the course you will learn about the Aberdeen Graduate Attributes, how they are relevant to you and the opportunities available to develop your skills and attributes alongside your University studies. You will also gain an understanding of equality and diversity and health, safety and wellbeing issues. Successful completion of this course will be recorded on your Enhanced Transcript as ‘Achieved’ (non-completion will be recorded as ‘Not Achieved’). The course takes approximately 3 hours to complete and can be taken in one sitting, or spread across a number of weeks and it will be available to you throughout the academic year.This course, which is prescribed for level 1 students and optional for level 2 students and above, is studied entirely online and covers topics relating to careers and employability, equality and diversity and health, safety and wellbeing. During the course you will learn about the Aberdeen Graduate Attributes, how they are relevant to you and the opportunities available to develop your skills and attributes alongside your University studies. You will also gain an understanding of equality and diversity and health, safety and wellbeing issues. Successful completion of this course will be recorded on your Enhanced Transcript as ‘Achieved’ (non-completion will be recorded as ‘Not Achieved’). The course takes approximately 3 hours to complete and can be taken in one sitting, or spread across a number of weeks and it will be available to you throughout the academic year

View detailed information about this course

The Physical Universe A (PX1015) - 15 Credit Points

Physics is the most fundamental of the sciences, and if we wish to better understand the nature and behaviour of the Universe, it is perhaps the best place to start. This course introduces the basic topics of Physics, from the sub-microscopic scale of electrons and atoms, to the orbits of the planets and stars, to the celestial mechanics of galaxies. It encompasses the work of Physicists like Isaac Newton, Albert Einstein, Marie Curie and Jocelyn Bell Burnell. If you’ve ever been curious about how the world works, you will hopefully find this course, typically well-regarded by students, interesting.

View detailed information about this course

The Physical Universe B (PX1513) - 15 Credit Points

Understanding electric and magnetic forces is of paramount importance for understanding the physical world. They are eventually responsible for the matter around us to self-organize (in solid, liquid and gas phases), with given structures, density, elastic properties, and so on. Furthermore, they are responsible for light emission and propagation across the space.

Already the first rudiments of electricity and magnetism will help to appreciate that they are two difference faces of the same coin: electromagnetism. This relationship is the first evidence of the possibility to build a unified description of the microscopic laws of the physical universe.

View detailed information about this course

Calculus i (MA1005) - 15 Credit Points

Calculus is the mathematical study of change, and is used in many areas of mathematics, science, and the commercial world. This course covers differentiation, limits, finding maximum and minimum values, and continuity. There may well be some overlap with school mathematics, but the course is brisk and will go a long way quickly.

View detailed information about this course

Algebra (MA1006) - 15 Credit Points

This course introduces the concepts of complex numbers, matrices and other basic notions of linear algebra over the real and complex numbers. This provides the necessary mathematical background for further study in mathematics, physics, computing science, chemistry and engineering.

View detailed information about this course

Calculus II (MA1508) - 15 Credit Points

The aim of the course is to provide an introduction to Integral Calculus and the theory of sequences and series, to discuss their applications to the theory of functions, and to give an introduction to the theory of functions of several variables.

This provides the necessary mathematical background for further study in mathematics, physics, computing science, chemistry and engineering.

View detailed information about this course

Optional Courses

  • Select further 15 credit points from Level 1 First Half Session Modern Language courses.
  • Select further 15 credit points from Level 1 Second Half Session Modern Language courses.
Year 2

Year 2

Compulsory Courses

Light Science (PX2013) - 15 Credit Points

For most of us, our perceptions are governed most strongly by our vision. We see because of light, but what is light? It’s been considered a particle, a wave, and in modern physics is somehow both. This course explores the fascinating physics of this phenomenon, at an elementary mathematical level suitable for non-science students. We’ll cover petrological microscopy, of interest to geologists, interference and diffraction, how colour works, see how polarisation can be applied in both scientific fields and every day life, and see how the photon can be used in devices in the increasing prevalent field known as photonics.

View detailed information about this course

Dynamical Phenomena (PX2015) - 15 Credit Points

Understanding oscillatory and wavelike behaviour is of huge importance in comprehending how our natural world works. It seems that everything in nature has its own cycle, rhythm or oscillation. From planets revolving around the sun to waves on the sea, even fundamental particles are treated as waves in modern physics. Accessible to students with some knowledge of calculus, this course will explain the mathematics of this fascinating and important subject. Methods of solving the differential equations that describe waves and oscillatory phenomena will be explored, including numerical techniques.

View detailed information about this course

Practical Optics and Electronics (PX2505) - 15 Credit Points

This 100% continuously assessed course explores two fundamental areas of physics. In electronics you will go from building simple circuits to designing complex logical architectures, using both real components and simulation software.

The optics half of the course explores various fascinating optical phenomena, some of which are practically applicable for geologists and many other scientific disciplines. The practicals elegantly demonstrate the fundamental properties of light.

View detailed information about this course

Relativity and Quantum Mechanics (PX2510) - 15 Credit Points

In the 20th Century, Physics got strange, and this course sets out to explore the foundations of this modern approach. In Special Relativity we will look at the idea that time is not an absolute – that events can happen in different times for different observers – and explore the effects of travelling at close to the speed of light. The quantum mechanics section introduces some of the most exciting and dramatically successful science of all time, and discuss the evolution of this idea from the days of Schrodinger’s cat to quantum tunnelling.

View detailed information about this course

Optional Courses

  • Select further 15 credit points from Level 2 First Half Session Modern Language courses.
  • Select further 15 credit points from Level 2 Second Half Session Modern Language courses.
  • Select further 30 credit points from courses of choice.
Year 3

Year 3

Compulsory Courses

Energy and Matter (PX3014) - 15 Credit Points

Our world is made of three types of matter, Solids, Liquids and Gases. The first part of this course will explore the physical properties of these forms of matter and investigate important technological phenomena such as the flow of liquids and the causes of catastrophic failure in mechanical components. In the second half of the course, the nature of heat energy in matter will be explored. Thermodynamic behaviour will be understood in terms of Entropy and the operation of engines and their theoretical efficiency limitations will be explained.

View detailed information about this course

Introduction to the Solid State (PX3016) - 15 Credit Points

The course is based on modern views on the structure of solids, how that structure is determined by X-ray crystallography and the basics of structure-property relationships. This involves learning the language of the basic shapes and symmetry displayed by crystals, then using that within the interdisciplinary subject of X-ray crystallography, source of many Nobel prizes and great advance in Physics, Chemistry, Materials Science, Biology and Medicine. The course then briefly examines some key topics including semiconductors, defects and amorphous materials.

View detailed information about this course

Research and Computing Skills (PX3017) - 15 Credit Points

This course introduces mathematical and computational methods. One half is an introduction to programming starting at basics such as variables, loops and conditional statements. This course part is taught in Python, with an emphasis on modern programming concepts and data analysis skills. The other half, taught concurrently, consists of advanced mathematical methods using examples from Physics; for example multivariable calculus and Maxwell's equations, or ODE and partial differential equations in classical and quantum mechanics. There will be a one week career strategies module at the end of the course.

View detailed information about this course

Quantum Mechanics (PX3511) - 15 Credit Points

The course aims to provide the students with the underpinning knowledge that will enable them to think constructively about phenomena that relate to the quantum structure of matter. It is intended that the students will gain a broad appreciation of the hierarchy of interactions that give rise to the energy levels of atoms and the consequent structure of the associated spectroscopic transitions. In comparison to the previous years more emphasis will be put on the general, mathematical structure of quantum theory, tackling topics such as Hilbert spaces and time independent perturbation theory.

View detailed information about this course

Optional Courses

  • Select further 30 credit points from Level 3 Modern Language courses.

Select further 30 credit points from the courses listed below:

  • Advanced Practical Physics (PX3510)
  • Electricity and Magnetism (PX3512)
  • Structure of Matter and the Universe (PX4510)
Advanced Practical Physics (PX3510) - 15 Credit Points

Theories of the physical world around us must be consistent with nature. This can be checked by experiment and indeed unexpected experimental results can lead to the development of new theories. This course offers the opportunity to test theories in optics, electromagnetism, thermodynamics and materials science by experiment. You will learn how to carry out experiments, analyse your data and present your results both in writing and verbally. You will get the opportunity to work with Michelson interferometers, venturi meters, sensors, instrumentation and computers. This course supports your physics lectures and prepares you for an experimental scientists work after university.

View detailed information about this course

Electricity and Magnetism (PX3512) - 15 Credit Points

We are surrounded by electromagnetic phenomena; it is not possible to understand the physical world without them. In this course we will discuss the link between electricity and magnetism, noticing that changing electric magnetic fields generate electric fields and the other way around. This will lead to the introduction of Faraday’s law, hugely relevant to understand how we generate electricity, and to the introduction of Maxwell’s correction to Ampere’s law, which will lead to the astounding result that light is an electromagnetic wave! We will finish the course by exploring how electromagnetic waves propagate and how they are originated.

View detailed information about this course

Structure of Matter and the Universe (PX4510) - 15 Credit Points

The first half of this course provides a detailed understanding of the origin of our Universe and the equations that describe its evolution. The creation of galaxies, stars - their structure, fusion processes and life cycles will be explored along with the formation of the planets. In the second half, the fundamental nature of matter will be investigated and theoretical techniques such as Lagrangians used to understand fields. Gauge field theory as an explanation of the fundamental forces of nature and the standard model will be explained.

View detailed information about this course

Year 4

Year 4

Compulsory Courses

Project A (PX4011) - 30 Credit Points

PX4011 provides the opportunity to carry out an independent, open-ended, piece of research work. This can be in an area of physics (astronomy, nuclear physics, superconductors, dynamical systems etc.) or in related subjects where physicists tools can be applied (generation of proteins, biomechanics, infectious diseases etc.). The project can be dissertation based, practical or computational. You will develop: presentation skills; experience of reading and thinking about a specialist topic in depth; critical analysis skills of your own and other people’s scientific work and project management skills. This will help prepare for your future career beyond university.

View detailed information about this course

Case Studies in the Physical Sciences (PX4007) - 15 Credit Points

Whatever career you end up in, group working skills will be critical, and this course is designed to develop them. It is 100% continuously assessed and consists of some initial teamwork training, followed by two very different projects. One explores PET scanning and is taught by Professor Andy Welch, who is in charge of the medical imaging unit at Foresterhill. The other is about fibre optics communications and is taught by Dr. Ross Macpherson. These open-ended projects will give you some less prescriptive assessment in your final year.

View detailed information about this course

Statistical Physics and Stochastic Systems (PX4012) - 15 Credit Points

Statistical physics derives the phenomenological laws of thermodynamics from the probabilistic treatment of the underlying microscopic system. Statistical physics, together with quantum mechanics and the theory of relativity, is a cornerstone in our modern understanding of the physical world.

Through this course, you will gain a better understanding of fundamental physical concepts such as entropy and thermodynamic irreversibility, and you will learn how derive some simple thermodynamic properties of gases and solids.

The final part of the course is devoted to an introduction to stochastic systems, which are widely used in many different fields such as physics, biology and economics.

View detailed information about this course

Optional Courses

  • Select further 15 credit points from First Half Session Modern Language courses across levels 3 and 4.
  • Select further 15 credit points from Second Half Session Modern Language courses across levels 3 and 4.

Select further 30 credit points from the courses listed below:

  • Structure of Matter and the Universe (PX4510)
  • Modelling Theory (PX4514)
  • Analytical Mechanics and Elements of General Relativity (PX4517)
Structure of Matter and the Universe (PX4510) - 15 Credit Points

The first half of this course provides a detailed understanding of the origin of our Universe and the equations that describe its evolution. The creation of galaxies, stars - their structure, fusion processes and life cycles will be explored along with the formation of the planets. In the second half, the fundamental nature of matter will be investigated and theoretical techniques such as Lagrangians used to understand fields. Gauge field theory as an explanation of the fundamental forces of nature and the standard model will be explained.

View detailed information about this course

Modelling Theory (PX4514) - 15 Credit Points

This course was designed to show you what you can do with everything you learnt in your degree. We will use mathematical techniques to describe a fast variety of “real-world” systems: spreading of infectious diseases, onset of war, opinion formation, social systems, reliability of a space craft, patterns on the fur of animals (morphogenesis), formation of galaxies, traffic jams and others. This course will boost your employability and it will be exciting to see how everything you learnt comes together.

View detailed information about this course

Analytical Mechanics and Elements of General Relativity (PX4517) - 15 Credit Points

Analytical mechanics, with its Lagrangian and Hamiltonian formulations, plays a pivotal role in almost every aspect of theoretical physics. It highlights the role of conservation laws, the most fundamental laws of nature, in shaping the physical world in which we live.

Mastering Lagrangian and Hamiltonian mechanics allows one to better appreciate and understand cornerstone physical theories such as Quantum Mechanics or Statistical Mechanics.

As an alternative to Hamiltonian mechanics, in the second half of the course students may follow a 5 weeks elementary introduction to Einstein’s General relativity, the geometrical theory of gravitation, which generalizes special relativity and Newton’s gravitation.

View detailed information about this course

Course Availability

We will endeavour to make all course options available; however, these may be subject to timetabling and other constraints. Please see our InfoHub pages for further information.

How You'll Study

Assessment Methods

Students are assessed by any combination of three assessment methods:

  • coursework such as essays and reports completed throughout the course;
  • practical assessments of the skills and competencies learnt on the course; and
  • written examinations at the end of each course.

The exact mix of these methods differs between subject areas, year of study and individual courses.

Honours projects are typically assessed on the basis of a written dissertation.

Why Study Physics with Modern Languages?

Why Physics

  • The Department of Physics at the University of Aberdeen has a long and illustrious history, and former staff include great physicists such as James Clerk Maxwell and G.P. Thomson.
  • We offer a modern, modular degree structure with a broad syllabus and a wide range of degree choices.
  • Long tradition of teaching physical sciences combined with modern facilities.
  • Emphasis placed on teaching employability and development of generic skills, useful in a wide range of careers.
  • We also offer a broad-based, less mathematical degree in Physical Science that allows the combination of Physics courses with a wide choice of other subjects.
  • Learn from research active, academic staff.
  • We are engaged in a wide range of research areas ranging from the fundamental nature of the universe through to understanding the atomic structure of complex materials and semiconductor device physics.
  • Our graduates go in to a huge range of jobs including; Meteorology, Medical physics, Environmental monitoring, Astronomy, Particle physics, Geophysics, Materials science, Invention Design, Teaching,
    Financial Modelling.

Entry Requirements

Qualifications

SQA Highers - AABB*
A Levels -BBB*
IB - 32 points, 5 at HL*
ILC - 5H with 3 at H2 AND 2 at H3 OR AAABB, obtained in a single sitting. (B must be at B2 or above)*

*Including good performance in both Mathematics and Physics.

Advanced Entry - Advanced Highers ABB, A Levels ABB or IB 34 points (6 at HL) with AB in Maths and Physics. MPhys Physics with Complex Systems Modelling has higher entry requirements.

Further detailed entry requirements for Sciences degrees.

English Language Requirements

To study for a degree at the University of Aberdeen it is essential that you can speak, understand, read, and write English fluently. Read more about specific English Language requirements here.

Fees and Funding

You will be classified as one of the fee categories below.

Fee Waiver

For international students (all non-EU students) entering in 2017/18, the 2017/18 tuition fee rate will apply to all years of study; however, most international students will be eligible for a fee waiver in their final year via the International Undergraduate Scholarship.

Most RUK students (England, Wales and Northern Ireland) on a four year honours degree will be eligible for a full-fees waiver in their final year. Scholarships and other sources of funding are also available.

Fee information
Fee category Cost
Home / EU £1,820
All Students
RUK £9,250
Students Admitted in 2018/19 Academic Year
International Students £18,900
Students Admitted in 2018/19 Academic Year

Additional Fees

  • In exceptional circumstances there may be additional fees associated with specialist courses, for example field trips. Any additional fees for a course can be found in our Catalogue of Courses.
  • For more information about tuition fees for this programme, including payment plans and our refund policy, please visit our InfoHub Tuition Fees page.

Our Funding Database

View all funding options in our Funding Database.

Undergraduate Open Day

Our next Open Day will be on

Find out More

Careers

There are many opportunities at the University of Aberdeen to develop your knowledge, gain experience and build a competitive set of skills to enhance your employability. This is essential for your future career success. The Careers Service can help you to plan your career and support your choices throughout your time with us, from first to final year – and beyond.

Our Experts

Information About Staff Changes

You will be taught by a range of experts including professors, lecturers, teaching fellows and postgraduate tutors. Staff changes will occur from time to time; please see our InfoHub pages for further information.

Key Information Set (KIS)

Unistats draws together comparable information in areas students have identified as important in making decisions about what and where to study. The core information it contains is called the Key Information Set.

You can compare these and other data for different degree programmes in which you are interested.

Get in Touch

Contact Details

Address
Student Recruitment & Admissions Service
University of Aberdeen
University Office
Regent Walk
Aberdeen
AB24 3FX