Introduction

Civil and Environmental Engineering is a hugely relevant degree for today. The environment is a major consideration for local, national and international companies and governments, but never more is this true than when it comes to engineering projects of all sizes. Greater consideration has to be given to a range of environmental factors and this degree will go some way to making students aware of them.

This programme is studied on campus.

This Honours degree programme follows a similar structure to the straight MEng Civil Engineering degree. The major difference is the compulsory requirement to study the Environmental Engineering course in year 4. This particular course deals with various aspects related to:

  • surface water: sources of water pollution and their impact on aqueous environment and public health, water quality and supply, wastewater treatment;
  • soil and groundwater: groundwater flow, groundwater contamination and pollution, subsurface contaminants transport mechanisms, sustainable land-groundwater management;
  • solid waste: sources of solid waste, characterisation and treatment of solid waste, solid waste management;
  • air pollution and control: air pollutants and sources, air pollution meteorology, pollutant dispersion in the air, air pollution control.

Students will develop a greater understanding of the environmental challenges and considerations required as part of major civil engineering projects, how to manage these challenges and implement effective solutions.

Degree marketing image

Key Programme Information

At a Glance

Learning Mode
On Campus Learning
Degree Qualification
MEng
Duration
60 months
Study Mode
Full Time
Start Month
September
UCAS Code
H255

What You'll Study

The first two years cover general Engineering, with elements of Chemical, Mechanical, Petroleum and Electrical/Electronics, as well as Civil. In the later years you specialise, following your chosen discipline in greater depth. You do not need to finalise your choice of specialisation until you begin third year.

It is possible to move between MEng and BEng and this can be accomplished at any point until the second half session of fourth year. Successful BEng candidates will be offered the chance to change to the MEng and there is no quota, meaning that if grade requirements are met that transfer is guaranteed.

Year 1

Year 1

Compulsory Courses

Professional Skills Part 1 (PD1001)

This course, which is prescribed for level 1 students and optional for level 2 students, is studied entirely online and covers topics relating to careers and employability, equality and diversity and health, safety and wellbeing. During the course you will learn about the Aberdeen Graduate Attributes, how they are relevant to you and the opportunities available to develop your skills and attributes alongside your University studies. You will also gain an understanding of equality and diversity and health, safety and wellbeing issues. Successful completion of this course will be recorded on your Enhanced Transcript as ‘Achieved’ (non-completion will be recorded as ‘Not Achieved’). The course takes approximately 3 hours to complete and can be taken in one sitting, or spread across a number of weeks and it will be available to you throughout the academic year.This course, which is prescribed for level 1 students and optional for level 2 students and above, is studied entirely online and covers topics relating to careers and employability, equality and diversity and health, safety and wellbeing. During the course you will learn about the Aberdeen Graduate Attributes, how they are relevant to you and the opportunities available to develop your skills and attributes alongside your University studies. You will also gain an understanding of equality and diversity and health, safety and wellbeing issues. Successful completion of this course will be recorded on your Enhanced Transcript as ‘Achieved’ (non-completion will be recorded as ‘Not Achieved’). The course takes approximately 3 hours to complete and can be taken in one sitting, or spread across a number of weeks and it will be available to you throughout the academic year

View detailed information about this course

Principles of Electronics (EG1008) - 15 Credit Points

The aim of the course is to introduce basic concepts of electrical & electronics within a context of general engineering. The topics covered are kept at an elementary level with the aim of providing the foundational material for subsequent courses at levels 1 and 2. The course adopts the philosophy of application oriented teaching. During each topic the students will be provided with examples of day-to-day devices. Topics covered include dc circuit analysis, electronic amplifiers, digital circuits, optoelectronics, and ac theory.

View detailed information about this course

CAD and Communication in Engineering Practice (EG1010) - 15 Credit Points

The course is designed to introduce the students to different methods of communication in the process of interchanging ideas and information. Oral presentation and writing of technical reports are introduced. The importing data from web-based and library-based sources will be integrated through information retrieval and investigative skills training. Professional ethics are covered on plagiarism, copyright and intellectual property. Engineering drawing skills and knowledge of relevant British and International Standards will be developed through intensive training in the use of computer aided design and modelling package, SolidWorks. Standard drawing formats including 3D depiction of stand alone parts and assemblies are covered.

View detailed information about this course

Fundamentals of Engineering Materials (EG1012) - 15 Credit Points

Engineering design depends on materials being shaped, finished and joined together. Design requirements define the performance required of the materials. What do engineers need to know about materials to choose and use them successfully? They need a perspective of the world of materials. They need understanding of material properties. They need methods and tools to select the right material for the job. This course will help you develop knowledge and skills required for the successful selection and use of engineering materials.

View detailed information about this course

Engineering Mathematics 1 (EG1504) - 15 Credit Points

The course presents fundamental mathematical ideas useful in the study of Engineering. A major focus of the course is on differential and integral calculus. Applications to Engineering problems involving rates of change and averaging processes are emphasized. Complex numbers are introduced and developed. The course provides the necessary mathematical background for other engineering courses in level 2.

View detailed information about this course

Fundamental Engineering Mechanics (EG1510) - 15 Credit Points

Engineering Mechanics is concerned with the state of rest or motion of objects subject to the action of forces. The topic is divided into two parts: STATICS which considers the equilibrium of objects which are either at rest or move at a constant velocity, and DYNAMICS which deals with the motion and associated forces of accelerating bodies. The former is particularly applied to beams and truss structures. The latter includes a range of applications, such as car suspension systems, motion of a racing car, missiles, vibration isolation systems, and so on.

View detailed information about this course

Optional Courses

  • Select a further 45 credit points from courses of choice
Year 2

Year 2

Compulsory Courses

Fluid Mechanics and Thermodynamics (EG2004) - 15 Credit Points

The fluid mechanics section of the course begins with the material properties of fluids. This is followed by studying fluid statics and principles of fluid motion. Bernoulli’s equation is used to explain the relationship between pressure and velocity. The final fluids section introduces the students to incompressible flow in pipelines.

The thermodynamics section presents: the gas laws, including Van Der Waals’ equation; the first law of thermodynamics with work done, heat supply, and the definitions of internal energy and enthalpy. The second law is introduced including entropy through the Carnot cycle.

View detailed information about this course

Process Engineering (EG2011) - 15 Credit Points

A general engineering course that provides insight into the two main conservation principles, mass and energy. Processes are usually described through block diagrams. This language, common to many disciplines in engineering, helps the engineer to look at their processes with an analytical view. Degree of freedom analysis is addressed, emphasising its importance to solve a set of linear equations that model fundamental balances of mass. Practical examples of Energy balances are displayed, bringing Thermodynamics to a practical level. Heat Transfer is introduced. Process control is introduced, explaining basic control techniques and concepts, i.e sensors, feedback, control loops and PID controllers.

View detailed information about this course

Engineering Mathematics 2 (EG2012) - 15 Credit Points

This course follows Engineering Mathematics 1 in introducing all the mathematical objects and techniques needed by engineers. It has three parts:

  • Matrices: definitions, operations, inverse and determinant; application to systems of linear equations.
  • Ordinary differential equations: 1st order (linear and separable), 2nd order with constant coefficients, forced osciallations and resonance.
  • Functions of two variables: partial derivatives and extrema, the chain rule, the heat equation and the wave equation.

View detailed information about this course

Solids and Structures (EA2502) - 15 Credit Points

This course provides students with the opportunity to refresh and extend their knowledge to analyse the mechanical behaviour of engineering materials and structures. In particular, mechanical properties of materials, and 2D and 3D stresses and strains are examined, the effects of internal imperfections on the performance of materials under loading, brittle fracture, fatigue and non-destructive testing are discussed. The structural analysis of beams and columns, deflection and buckling, as well as design applications are also considered in the course.

View detailed information about this course

Design and Computing in Engineering Practice (EG2501) - 15 Credit Points

A general engineering course that provides an insight into the principles of engineering design process, computer programming in MATLAB and its application in parametric study and basic design optimisation, environmental ethics and sustainability in the context of design, and Computer Aided Design (CAD) using Solidworks. The course also includes hands-on exercises on the manufacture of simple parts using a variety of machine tools and joining processes.

View detailed information about this course

Electrical and Mechanical Systems (EG2503) - 15 Credit Points

This course provides students with an integrated development of methods for modelling, analysing and designing systems comprising electrical and mechanical components. In doing so it intends to emphasise to the students the similarity in behaviour between electrical and mechanical systems. The course aims to give an introduction to both electrical machines, circuit and systems, transformers, and similar mechanical systems like gearbox, vibrating system and principles of dynamics, and thus provide the foundation material for several courses at level 3 .

View detailed information about this course

Optional Courses

  • Select a further 30 credit points from courses of choice
Year 3

Year 3

Compulsory Courses

Geotechnics 1 (EA3027) - 15 Credit Points

Aimed principally at students interested in civil engineering, it aims to familiarise students with the fundamental concepts involved in soil mechanics and engineering geology. The first course in the cvil engineering programme that includes the importance of soil mechanics in the structural design. The main emphasis is understanding the main principles of soil mechanics through the introduction of laboratory tests commonly used to obtain the engineering properties of different types of soil such as sand and clay. Discussion of the consequences of some soil failures (such as in the case of Tower of Pisa) are also introduced.

View detailed information about this course

Engineering Analysis and Methods 1 (EG3007) - 15 Credit Points

Modern engineering analysis relies on a wide range of analytical mathematical methods and computational techniques in order to solve a wide range of problems. The aim of this course is to equip students with the necessary skills to quantitatively investigate engineering problems. Examples applying the methods taught to practical situations from across the full range of engineering disciplines will feature heavily in the course.

View detailed information about this course

Stress Analysis A (EM3015) - 15 Credit Points

One of the roles of an engineer is to ensure that engineering components perform in service as intended and do not fracture or break into pieces. However, we know that sometimes engineering components do fail in service. Course examines how we determine the magnitude of stresses and level of deformation in engineering components and how these are used to appropriately select the material and dimensions for such component in order to avoid failure. Focus is on using stress analysis to design against failure, and therefore enable students to acquire some of the fundamental knowledge and skills required for engineering design.

View detailed information about this course

Fluid Mechanics (EM3019) - 15 Credit Points

The course begins with dimensional analysis and the concept of dynamic similarity applied to fluid flow phenomena. This is followed by sections on the energy and momentum equations applied to a range of problems in civil, mechanical, chemical and petroleum engineering, including steady flow in pipes, design of pump-pipeline systems, cavitation, forces on bends, nozzles and solid bodies, turbomachinery and propellor theory. A section on unsteady flow applies inertia and water hammer theory to the calculation of pressure surge in pipes. The final section deals with flow through porous media such as flow through soils and rocks.

View detailed information about this course

Mechanics of Structures (EA3518) - 15 Credit Points

The major topic of this course is an introduction to modern methods of elastic structural analysis. In this topic, direct, energy and matrix methods are jointly used to solve, initially, problems of the deformation of simple beams. The theorem of virtual work is introduced in the context of beams and frameworks.

The rigid-plastic analysis of beams is then introduced along with the upper bound theorem and their importance to engineering design.

View detailed information about this course

Design of Structural Elements (EA3519) - 15 Credit Points

This course is an introduction to Structural Design using steel, concrete and composite steel/concrete.

The emphasis is on the design of individual components – the ‘Structural Elements’ – these being members in tension, compression, bending – in either steel or reinforced concrete – and in the bolted and welded connections between steel members.

There is an extensive laboratory exercise testing reinforced and un-reinforced concrete to destruction.

It should be noted that students are also required to do the separate course EA3720, half of which consists of a 9 week Steel Design exercise.

View detailed information about this course

Structural Dynamics A (EA3538) - 10 Credit Points

This course introduces the theory of dynamics and the vibration of single and multi-degree of freedom systems.

View detailed information about this course

Civil Engineering Design and Surveying and Hydrology Field Trip (EA3720) - 10 Credit Points

This course consists of two quite separate halves. The first is a 9 week Civil Engineering Design activity, which runs concurrently with the associated course EG3519 (Design of Structural Elements). Generally there will be two half days of timetabled sessions in each of those 9 weeks. The second half of the course is a one-week residential Field Surveying and Hydrology field trip, which usually takes place in the first week of the Easter break. There will be a charge to students to cover the specific transport, food and accommodation costs associated with that field trip.

View detailed information about this course

Project and Safety Management (EG3599) - 10 Credit Points

To course aims to provide students with an awareness of purpose, principals, fundamental concepts and strategies of safety and project management.

View detailed information about this course

Year 4

Year 4

Compulsory Courses

MEng Individual Project (EG4013) - 45 Credit Points

To provide the student with the opportunity of pursuing a substantial and realistic research project in the practice of engineering at or near a professional level, and to further enhance the student's critical and communication skills. The project will usually be carried out at the University of Aberdeen but may be carried out at industry or other research location.

View detailed information about this course

Geotechnics 2 (EA40JE) - 10 Credit Points

It aims to equip students with the main concepts of foundation design where the concepts of pile foundations, retaining walls and slope stability are explored. The course gives a student adequate tools to understand the design approaches associated with different types of soil. Geotechnical standard code, Eurocode 7 is introduced and discussed. In addition principles of ground water flow and the main problems related to its sustainable management are discussed. This course aims for a student to reach an adequate level in soil mechanics and foundation engineering as the basis for the training of a professional civil or structural engineer.

View detailed information about this course

Civil Engineering Hydraulics (EA40JF) - 10 Credit Points

The course begins with consideration of boundary layer development over a flat plate and curved surfaces, leading to boundary layer separation and forces on immersed bodies. This is followed by study of water wave theory with application to coastal and offshore engineering. These topics are also part of the EG40JJ Fluid Dynamics course. The second part of the course focuses on open channel flow and sediment transport, covering the St Venant equations, calculation of gradually varied flow profiles, fundamental aspects of sediment transport, and the calculation of bed load and suspended load transport.

View detailed information about this course

Advanced Structural Design (EA40JG) - 10 Credit Points

This course is a follow-on course to the Level 3 Course on Design of Structural Elements (EG3519) (and to some extent the Level 3 Civil Engineering Design (EG3720)). It covers four main areas:

a) Design of Industrial Buildings in Structural Steelwork

b) Design of steel-framed multi-storey buildings

c) Design of domestic buildings using masonry and timber

d) Design of pre-stressed concrete

View detailed information about this course

Environmental Engineering (EA4527) - 15 Credit Points

This course will deal with various aspects related to:

  • Surface Water: sources of water pollution and their impact on aqueous environment and public health, water quality and supply, wastewater treatment;
  • Soil and Groundwater: groundwater flow, groundwater contamination and pollution, subsurface contaminants transport mechanisms, sustainable land-groundwater management;
  • Solid Waste: sources of solid waste, characterisation and treatment of solid waste, solid waste management;
  • Air Pollution and Control: air pollutants and sources, air pollution meteorology, pollutant dispersion in the air, air pollution control.

View detailed information about this course

Optional Courses

  • Select a further 30 further credit points from courses of choice
Year 5

Year 5

Compulsory Courses

Numerical Simulation of Waves (EG501S) - 15 Credit Points

Wave equations describe transient phenomena commonly encountered in all areas of engineering. This course covers: (i) elastic waves, such as response of offshore structures to wind or wave loading, earthquakes; (ii) acoustic waves such as water hammer in pipelines, micro-pressure waves in railway tunnels; (iii) electromagnetic waves, such as signals in transmission lines, transient states in DC cables. These phenomena in real world engineering applications are simulated using several numerical methods. Students develop their own simulation codes using Matlab or any other programming language, and run a series of simulations for the problem of their choice.

View detailed information about this course

The Engineer in Society (EG501W) - 15 Credit Points

Students will examine the societal grand challenges of water, food, medicine and energy (electricity and heat) to thread together the themes of environment, sustainability and ethics.

The course also aims to provide graduates with a versatile framework for evaluating and developing business models which should prove invaluable for both potential entrepreneurs and future senior executives.

View detailed information about this course

Structural Vibrations (EG50T9) - 15 Credit Points

The need for understanding dynamics in modern structural engineering arises from the fact that structures are often subjected to dynamic loads such as waves, wind, earthquake, blast and impacts. The structural engineer must therefore be able to understand and quantify dynamic loads and their effects. This course reviews the fundamentals of structural dynamics and explains more advanced concepts and methods (including analytical and numerical), as well as their applications to practical design and analysis problems. The theoretical concepts are illustrated by worked examples and numerous tutorial problems and assignments will enable students to gain confidence in their use.

View detailed information about this course

MEng Group Design (EG5565) - 30 Credit Points

Real-life contemporary engineering projects and challenges invariably require inputs from, and collaboration amongst, multiple disciplines. Furthermore, legal and economic aspects, as well as safety, team work and project management must also be successfully navigated through. This course enables students to immerse themselves in a realistic, multidisciplinary, multifaceted and complex team design project that will draw on their previous specialist learning and also enable gaining and practicing new skills of direct relevance to their professional career.

View detailed information about this course

Remediation Technology (SS5500) - 15 Credit Points

A highly interactive course, that uses extensively e-learning platforms to enable students to better understand the assessment of contaminated land. Students will learn how to interpret and apply current risk assessment regulations and predict as well as model contaminant pathways. Students will gain valuable experience in using the latest computer software and incorporate real data in order to quantify risk. Very importantly, students will be able to forecast remediation options for a variety of situations and consider the implications and processes involved.

View detailed information about this course

Optional Courses

Select one of the following:

  • Offshore Structural Design (EG50JG)
  • Computational Fluid Dynamics (EG501V)

Plus, select one of the following:

  • Hydro, Marine and Wind Energy (EG55M2)
  • Mathematical Optimisation (EG551T)
  • Pipelines and Soil Mechanics (EG55F2)
  • Risers Systems and Hydrodynamics (EG55F6)
  • Engineering Risk and Reliability Analysis (EG55P6)
Offshore Structural Design (EA50JG) - 15 Credit Points

This course follows on from the Level 3 Design of Structural Elements course and the Level 4 Advanced Structural Design course, extending the earlier concepts into areas relevant to Offshore Structural Design. The course aim is to introduce the student to some specialised fields of conceptual structural engineering design in an offshore context, and to develop confidence in these areas. The course divides into current main topics of offshore structures and involves hand calculations with the aid of spreadsheets and advanced computational modelling for accurate loading, analysis and design.

View detailed information about this course

Computational Fluid Dynamics (EG501V) - 15 Credit Points

The course aims to provide understanding of main principles and techniques underpinning computational fluid dynamics (CFD) combining numerical methods with practical experience using appropriate software. The course develops a foundation for understanding, developing and analysing successful simulations of fluid flows applicable to a broad range of applications.

View detailed information about this course

Mathematical Optimisation (EG551T) - 15 Credit Points

Ever wondered how Excel is able to draw an optimal line through a set of points? This course looks at how typical engineering problems that cannot be described mathematically (or are difficult to do so) can be solved so that the optimal solution is found. The course contains a range of examples to show how the techniques are applied to real world problems in different engineering disciplines. The course will show how to develop computational algorithms from scratch, with a fundamental understanding of how the algorithms function, both mathematically and then in real time on a computer.

View detailed information about this course

Pipelines and Soil Mechanics (EG55F2) - 15 Credit Points

Offshore production of oil and gas requires transportation of the oil and gas from where it is produced to shipping vessels, storage tanks or refinery. The transportation is done using pipelines which are installed on the seabed. This course examines the engineering and scientific concepts that underpin the selection of the material and size of such pipelines as well as safe installation and operation. The environmental impact and the role played by the seabed profile are also discussed. Contribution from industry-based practicing engineers is used to inform students of current practices and technologies in subsea pipelines.

View detailed information about this course

Risers Systems and Hydrodynamics (EG55F6) - 15 Credit Points

The course provides students with detailed knowledge of risers systems design considerations. Typical riser systems including flexible, steel catenary, hybrid and top tensioned riser systems are covered. The ocean environmental hydrodynamics and interactions between vessel, mooring and riser systems are also considered.

View detailed information about this course

Engineering Risk and Reliability Analysis (EG55P6) - 15 Credit Points

The world is full of uncertainties and there is a level of risk in every human activity, including engineering. Many industries require an engineer to manage significant risks and design for high reliability, such as oil and gas, subsea, nuclear, aviation and large civil projects (e.g. bridges and dams). To meet these engineering challenges and make rational decisions in the presence of uncertainty, this course will introduce students to methods and tools used by engineers to analysis risk and reliability.

View detailed information about this course

Hydro, Marine, and Wind Energy (EG55M2) - 15 Credit Points

The course studies the physical principles, technologies and systems, and effects on the environment associated with renewable energy generation from wind, marine and hydro sources. The course provides understanding of the position of these sources of energy in the current and future global energy requirements and the technical challenges in meeting the future energy demands.

The laboratory exercise is designed to reinforce many of the concepts covered in lectures. This includes experiments on the performance characteristics of a turbine.

View detailed information about this course

Course Availability

We will endeavour to make all course options available; however, these may be subject to timetabling and other constraints. Please see our InfoHub pages for further information.

How You'll Study

Learning Methods

  • Field Work
  • Group Projects
  • Individual Projects
  • Lectures
  • Research
  • Tutorials

Assessment Methods

Students are assessed by any combination of three assessment methods:

  • coursework such as essays and reports completed throughout the course;
  • practical assessments of the skills and competencies learnt on the course; and
  • written examinations at the end of each course.

The exact mix of these methods differs between subject areas, year of study and individual courses.

Honours projects are typically assessed on the basis of a written dissertation.

Further Information

View detailed learning and assessment information for this programme

How the programme is taught

The typical time spent in scheduled learning activities (lectures, tutorials, seminars, practicals), independent self-study or placement is shown for each year of the programme based on the most popular course choices selected by students.

How the programme is assessed

The typical percentage of assessment methods broken down by written examination, coursework or practical exams is shown for each year of the programme based on the most popular course choices selected by students.

Year 1

Learning Method
scheduled: 39%
independent: 61%
placement: 0%
Assessment
written: 61%
coursework: 39%
practical: 0%

Year 2

Learning Method
scheduled: 39%
independent: 61%
placement: 0%
Assessment
written: 56%
coursework: 44%
practical: 0%

Year 3

Learning Method
scheduled: 38%
independent: 62%
placement: 0%
Assessment
written: 77%
coursework: 23%
practical: 0%

Year 4

Learning Method
scheduled: 15%
independent: 85%
placement: 0%
Assessment
written: 34%
coursework: 50%
practical: 16%

Year 5

Learning Method
scheduled: 77%
independent: 23%
placement: 0%
Assessment
written: 42%
coursework: 50%
practical: 8%

Why Study Civil and Environmental Engineering?

Offering up the same breadth of benefits on offer through the Civil Engineering degree, the focus on environmental engineering is ideally suited to students who want to progress into careers where they can use engineering principles and solutions to have a direct positive impact on environmental challenges and problems facing society. 

Entry Requirements

Qualifications

The information below is provided as a guide only and does not guarantee entry to the University of Aberdeen.

  • 4H at AABB
  • AB in Mathematics and Physics/Engineering Science. If applicant presents with H in Engineering Science instead of Physics, Mathematics must be A grade.
  • S at grades 1, 2, or 3, or National 5 at grades A, B or C in English.

You can find further information under the Engineering tab on the Undergraduate Entry Requirements page.

Further detailed entry requirements for Engineering degrees.

English Language Requirements

To study for a degree at the University of Aberdeen it is essential that you can speak, understand, read, and write English fluently. Read more about specific English Language requirements here.

Fees and Funding

You will be classified as one of the fee categories below.

Fee Waiver

For international students (all non-EU students) entering in 2017/18, the 2017/18 tuition fee rate will apply to all years of study; however, most international students will be eligible for a fee waiver in their final year via the International Undergraduate Scholarship.

Fee information
Fee category Cost
Home / EU £1,820
All Students
RUK £9,250
Students Admitted in 2018/19 Academic Year
International Students £18,400
Students Admitted in 2018/19 Academic Year

Additional Fees

  • In exceptional circumstances there may be additional fees associated with specialist courses, for example field trips. Any additional fees for a course can be found in our Catalogue of Courses.
  • For more information about tuition fees for this programme, including payment plans and our refund policy, please visit our InfoHub Tuition Fees page.

Our Funding Database

View all funding options in our Funding Database.

Careers

A Civil Engineer can take a specific progression route within the career of engineering. You can specialise in specific areas of infrastructure with an employer or work on projects around the world as a self-employed consultant. Having an environmental element to your degree is very useful to understanding the now complex issues of climate change and its effects on infrastructure. Having this additional element to your degree can make you highly employable in a changing environment where innovation and understanding environmental issues can make a real difference to quality of life and can be essential to meet regulatory requirements.

Our Experts

Information About Staff Changes

You will be taught by a range of experts including professors, lecturers, teaching fellows and postgraduate tutors. Staff changes will occur from time to time; please see our InfoHub pages for further information.

Unistats

Unistats draws together comparable information in areas students have identified as important in making decisions about what and where to study. You can compare these and other data for different degree programmes in which you are interested.

Get in Touch

Contact Details

Address
Student Recruitment & Admissions Service
University of Aberdeen
University Office
Regent Walk
Aberdeen
AB24 3FX