Dr James Ross

Dr James Ross
Dr James Ross

Dr James Ross

PhD, CPhys, MInstP, MIPEM

Lecturer

About

F9

Biomedical Physics Building

School of Medicine, Medical Sciences & Nutrition

Foresterhill

University of Aberdeen

AB25 2ZD

Biography

Dr Ross graduated from the University of St Andrews in 2009 with an MPhys(Hons) in Theoretical Physics. He then completed an MSc in Medical Physics at Aberdeen University in 2011 before completing a PhD in Medical Physics under the supervision of Professor David Lurie.

He joined Prof Lurie's team as a Research Assistant in 2015 on the EPSRC funded "Zero-Field MRI" project. He was appointed Research Fellow in 2016 on the EU Horizon-2020 funded "IDentIFY" project where he worked on developing Fast Field-Cycling MRI (FFC-MRI) techniques for biomedical and clinical applications.

He was appointed Lecturer in 2020 and joined the team of Professor Dana Dawson where he is currently leading the development of 31P magnetic resonance spectroscopy techniques for non-invasively probing cardiac energetics at 3T while continuing to work on new applications for FFC-MRI in heart, brain and breast imaging.

Qualifications

  • MPhys Theoretical Physics 
    2009 - University of St Andrews 
  • MSc Medical Physics 
    2011 - University of Aberdeen 
  • PhD Medical Physics 
    2016 - University of Aberdeen 

Memberships and Affiliations

Internal Memberships

2020-: School Ethics Review Board

External Memberships

2021-23: Young Editorial Board Member of the European Journal of Medical Physics

2021-25: Institute of Physics Medical Physics Group Committee

Research

Research Overview

My research is focused on a novel form of MRI, known as Fast Field-Cycling MRI (FFC-MRI) currently being developed at the University of Aberdeen. Unlike in conventional MRI where the static magnetic field B0 is held constant, in FFC-MRI the field is deliberately varied during the imaging sequence. This allows parameters such as the spin-lattice relaxation time, T1, to be studied as a function of B0. This "T1 dispersion" has demonstrated strong potential as a novel form of MRI contrast, and could find application in the diagnosis and characterisation of a wide range of pathologies.

I am interested in developing new imaging pulse sequences and reconstruction techniques for use with FFC-MRI with the aim of reducing scan time while still exploiting the unique Tdispersion information that is accessible using FFC-MRI. 

Research Areas

Applied Health Sciences

Supervising

Physics

Supervising

Research Specialisms

  • Medical Physics

Our research specialisms are based on the Higher Education Classification of Subjects (HECoS) which is HESA open data, published under the Creative Commons Attribution 4.0 International licence.

Current Research

I am currently working on the development of phosphorus magnetic resonance spectroscopy (31P-MRS) techniques in the heart at 3T. Unlike conventional 1H techniques, 31P MRS allows the direct detection of metabolites involved in energy metabolism (for example PCr and ATP) which could make it a valuable tool in characterising conditions where there is impaired cardiac function.

Owing to the comparatively lower concentrations of phosphorus in-vivo, the lower gyromagnetic ratio and the added complications of respiratory and cardiac motion, cardiac 31P-MRS is a particuarly challenging technique which requires particular care in the choice of pulse sequence and acquisition parameters.

Knowledge Exchange

I reguarly take part in public engagement events aimed at explaining concepts in medical physics and electromagnetism to the wider community. Some past events include:

2019: Cell Block Science - an initiative started by St Andrews University aimed at educating inmates at prisons on ongoing research at local universities. In this event Prof David Lurie and I spent the day at HMP Grampian where we talked about the history of magnetic resonance imaging development at Aberdeen and demonstrated some of the fundamental physics that makes MRI possible.

Dr James Ross demonstrating electromagnetic induction at HMP Grampian

2016, 2018, 2019: Doors Open Day is an event where usually closed buildings in Aberdeen are open to the public. This gives us an opportunity to show off what goes on in our labs at Aberdeen University. For the past few years I have given tours of the FFC-MRI labs to the public and hosted stalls in the IMS to talk about my research.

2019: I presented our work on FFC-MRI at the Scottish Parliament as part of the European Researcher's Night "Explorathon" event.

2018: I gave a public lecture on the history of MRI for MENSA Scotland.

Funding and Grants

British Heart Foundation: The Next Leap in Cardiac Magnetic Resonance Imaging: Cycling the Field; D Dawson, D Lurie, L Broche, J Ross, H Abbas: , 2020-2023, £278k

SINAPSE Innovation Partnership: Towards a Cardiac Magnetic Resonance Protocol for Fast Field-Cycling MRI; J Ross, D Dawson, D Lurie, A Mezincescu: 2020-2021, £10k

Teaching

Teaching Responsibilities

I lecture on the physics of MRI for the M.Sc courses in Medical Physics and Medical Imaging. I also supervise undergraduate and postgraduate dissertation projects in MRI.

Publications

Page 1 of 6 Results 1 to 10 of 54

Refine

Chapters in Books, Reports and Conference Proceedings

Contributions to Conferences

Contributions to Journals