Professor David Lurie

Professor David Lurie
FInstP, FIPEM, FISMRM, DUniv (honoris causa)
Emeritus Professor
- About
-
Biography
Since my retirement in October 2021, I have been an Emeritus Professor at the University of Aberdeen. I previously held a Chair in Biomedical Physics at the University (2002-21), where I researched and taught MRI Physics, starting when I joined Jim Hutchison’s team in 1983.
My research was concerned with the development of MRI technology and its bio-medical applications, most recently in the area of Fast Field-Cycling MRI, which was pioneered by the group that I led. Whereas standard MRI scanners operate at a single magnetic field (e.g. 1.5 T or 3 T), FFC scanners have the ability to switch magnetic field rapidly during a scan, thereby obtaining information on the variation of the NMR relaxation times with magnetic field strength. Results indicate that this can provide a valuable new contrast mechanism for clinical MRI.
During my career I obtained research grants totalling over £11.1m as Principal Investigator. In 2015 a consortium of seven research laboratories and two companies, coordinated by me, secured €6.60m (£5.92m) from the European Union’s Horizon 2020 scheme to develop FFC-MRI as a clinical imaging modality; the “IDentIFY” project ran for 4 years from January 2016.
I have given over 100 invited, keynote and plenary lectures at conferences and workshops world-wide. I am author of 86 peer-reviewed papers, 8 book chapters as well as more than 280 conference abstracts.
My CV can be found here and my bibliography is available here.
Qualifications
- BSc (Hons) Natural Philosophy1979 - University of Aberdeen
- MSc Radiation Physics1980 - University of London
- PhD Medical Physics1984 - University of London
External Memberships
I am Past Chair of the Communications and Publications Committee of the European Federation of Organisations for Medical Physics (EFOMP), having been Chair from January 2020 to February 2022.
Prizes and Awards
In 2017 I was awarded the Academic Gold Medal of the Institute of Physics and Engineering in Medicine (IPEM).
In 2021 I was awarded Senior Fellowship of the International Society for Magnetic Resonance in Medicine (ISMRM).
In 2022 I was given an Honorary Doctorate (D.Univ., honoris causa) by the University of the Highlands and Islands. - Publications
-
Page 1 of 18 Results 1 to 10 of 172
A flexible 8.5 MHz litz wire receive array for field-cycling imaging
Physics in Medicine and Biology, vol. 68, no. 5, 055016Contributions to Journals: Articles- [ONLINE] DOI: https://doi.org/10.1088/1361-6560/acb9d0
Optimization of an RF Array for Cardiac Magnetic Resonance at 8.5 MHz
Joint Annual Meeting ISMRM-ESMRMBContributions to Conferences: AbstractsNew developments in MRI: System characterization, technical advances and radiotherapy applications
Physica Medica, vol. 90, pp. 50-52Contributions to Journals: Editorials- [ONLINE] DOI: https://doi.org/10.1016/j.ejmp.2021.09.001
In memoriam: John R. Mallard (1927-2021)
Magnetic Resonance in Medicine, vol. 86, no. 4, pp. 1815-1817Contributions to Journals: Articles- [ONLINE] DOI: https://doi.org/10.1002/mrm.28838
A New Method for Investigating Osteoarthritis using Fast Field Cycling Nuclear Magnetic Resonance
Physica Medica, vol. 88, pp. 142-147Contributions to Journals: ArticlesLow-Field NMR Relaxometry for Intraoperative Tumour Margin Assessment in Breast-conserving Surgery
Cancers, vol. 13, no. 16, 4141Contributions to Journals: ArticlesMonitoring tissue implants by field-cycling H-1-MRI via the detection of changes in the N-14-quadrupolar-peak from imidazole moieties incorporated in a "smart" scaffold material
Journal of Materials Chemistry B, vol. 9, no. 24, pp. 4863-4872Contributions to Journals: ArticlesIn memoriam: John R. Mallard (1927–2021)
Magnetic Resonance Materials in Physics, Biology and Medicine, vol. 34, pp. 323-325Contributions to Journals: Articles- [ONLINE] DOI: https://doi.org/10.1007/s10334-021-00925-0
A novel class of 1H-MRI Contrast Agents based on the relaxation enhancement induced on water protons by 14N imidazole moieties
Angewandte Chemie International Edition, vol. 60, no. 8, pp. 4208-4214Contributions to Journals: Articles1H spin-lattice NMR relaxation in the presence of residual dipolar interactions: Dipolar relaxation enhancement
Journal of Magnetic Resonance, vol. 318, 106783Contributions to Journals: Articles