Dr Marcus Campbell Bannerman
Senior Lecturer
- About
-
Internal Memberships
Programme leader for Chemical Engineering.
EG4012/EG4013 Coordinator for Chemical Engineering undergraduate thesis/individual projects. - Research
-
Research Overview
I apply a wide range of computational techniques to solve engineering problems. This sounds very nebulous but I have worked on a broad range of topics ranging from computational thermodynamics, particle dynamics simulation, and pilot-scale production trials of novel cement formulations to the virtual reality rendering of volumetric datasets and GPU programming. At the heart of it all is the development of engineering simulation software.
Current Research
I am currently working on the production-process optimisation, simulation, and computational thermodynamics of a novel low-carbon cement formulations and traditional Portland cement. I have developed a thermodynamic database for the high-temperature simulation of cement clinkerisation, which is accessible here at http://simcem.com.
A large part of my research is also centred on simulation of molecular and granular particulate systems. As a part of that research I developed a unique and cutting-edge event-driven particle-dynamics package called DynamO. DynamO is a general tool that has already found application in a wide range of systems such as granular dampers, nano-colloidal fluids, and protein folding/helix formation. A major focus of my current research centres around the development a new class of particle models for solids processing systems. Coupled with novel algorithms, it is now possible to simulate process scale equipment with millions of particles in near real-time. An example application is in the full-scale modelling of the solids/granular/heat/reaction processes in cement kilns. For more information, please visit http://dynamomd.org.
- Teaching
-
Teaching Responsibilities
EX3030 Heat, Mass, and Momentum Transfer
EM40JN Heat and Momentum Transfer
EX3502 Separation Processes 1 (evaporation, distillation, and absorption)
EG5099 Upstream Oil & Gas Engineering - Publications
-
Page 1 of 4 Results 1 to 10 of 40
Investigating the effects of helium, argon and hydrogen co-feeding on the non-oxidative coupling of methane in a dielectric barrier discharge reactor
Chemical Engineering Science, vol. 259, 117731Contributions to Journals: Articles- [ONLINE] DOI: https://doi.org/10.1016/j.ces.2022.117731
Tethered-particle model: The calculation of free energies for hard-sphere systems
The Journal of Chemical Physics, vol. 155, no. 6, 064504Contributions to Journals: ArticlesA Numerical Investigation into the Correlation Function of Inelastic Hard Spheres Using Event Driven Particle Dynamics
Contributions to Conferences: PapersRobust event-driven particle tracking in complex geometries
Computer Physics Communications, vol. 254, 107229Contributions to Journals: ArticlesThermodynamic data for cement clinkering
Cement and Concrete Research, vol. 132, 106043Contributions to Journals: ArticlesA comprehensive study of the thermal conductivity of the hard sphere fluid and solid by Molecular Dynamics simulation
Physical Chemistry Chemical Physics, vol. 22, no. 16, pp. 8834-8845Contributions to Journals: Articles- [ONLINE] DOI: https://doi.org/10.1039/D0CP00494D
- [OPEN ACCESS] http://aura.abdn.ac.uk/bitstream/2164/16237/1/HSThermalConductivity.pdf
- [ONLINE] View publication in Scopus
Development of a novel process for the production of calcium sulfoaluminate
Contributions to Conferences: PapersDevelopment of a novel process for the production of calcium sulfoaluminate
15th International Congress on the Chemistry of CementContributions to Conferences: PostersThermodynamic and dynamical properties of the hard sphere system revisited by molecular dynamics simulation
Physical Chemistry Chemical Physics, vol. 21, no. 13, pp. 6886-6899Contributions to Journals: Articles- [ONLINE] DOI: https://doi.org/10.1039/C9CP00903E
- [OPEN ACCESS] http://aura.abdn.ac.uk/bitstream/2164/13887/1/main_text.pdf
- [ONLINE] View publication in Scopus
- [ONLINE] View publication in Mendeley
Anomalous heat transport in binary hard-sphere gases
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, vol. 99, no. 3, 030102(R)Contributions to Journals: Letters- [ONLINE] DOI: https://doi.org/10.1103/PhysRevE.99.030102
- [OPEN ACCESS] http://aura.abdn.ac.uk/bitstream/2164/12138/1/main.pdf
- [ONLINE] View publication in Scopus
- [ONLINE] View publication in Mendeley
- [ONLINE] https://abdn.pure.elsevier.com/en/en/researchoutput/anomalous-heat-transport-in-binary-hardsphere-gases(fc636f52-9b57-4917-9716-5cefc2012408).html