15 credits
Level 1
Second Term
Impossibly distant, sparkling jewels cast on the black velvet cloth of the sky, no sight inspires more awe than the beauty of the stars. This course explores the evolution of our understanding of astronomy from how the Universe at large works to the modern view of our solar system.
Science also intersects with our daily lives in the weather. We discuss the way elementary physics causes everything from everyday weather to colossal storm systems, and we explore some major science issues including climate change.
Historically descriptive, with introductory basic physical concepts, this is a suitable course for all undergraduate students.
15 credits
Level 2
First Term
For most of us, our perceptions are governed most strongly by our vision. We see because of light, but what is light? It’s been considered a particle, a wave, and in modern physics is somehow both. This course explores the fascinating physics of this phenomenon, at an elementary mathematical level suitable for non-science students. We’ll cover petrological microscopy, of interest to geologists, interference and diffraction, how colour works, see how polarisation can be applied in both scientific fields and every day life, and see how the photon can be used in devices in the increasing prevalent field known as photonics.
15 credits
Level 2
First Term
Understanding oscillatory and wavelike behaviour is of huge importance in comprehending how our natural world works. It seems that everything in nature has its own cycle, rhythm or oscillation. From planets revolving around the sun to waves on the sea, even fundamental particles are treated as waves in modern physics. Accessible to students with some knowledge of calculus, this course will explain the mathematics of this fascinating and important subject. Methods of solving the differential equations that describe waves and oscillatory phenomena will be explored, including numerical techniques.
15 credits
Level 2
First Term
This course introduces computational methods in Physics and Astrophysics. It consists of an introduction to programming, starting at basics such as variables, loops and conditional statements. This course is taught in Python, with an emphasis on modern programming concepts and data analysis skills.
15 credits
Level 2
Second Term
This 100% continuously assessed course explores two fundamental areas of physics. In electronics you will go from building simple circuits to designing complex logical architectures, using both real components and simulation software.
The optics half of the course explores various fascinating optical phenomena, some of which are practically applicable for geologists and many other scientific disciplines. The practicals elegantly demonstrate the fundamental properties of light.
15 credits
Level 2
Second Term
In the 20th Century, Physics got strange, and this course sets out to explore the foundations of this modern approach. In Special Relativity we will look at the idea that time is not an absolute – that events can happen in different times for different observers – and explore the effects of travelling at close to the speed of light. The quantum mechanics section introduces some of the most exciting and dramatically successful science of all time, and discuss the evolution of this idea from the days of Schrodinger’s cat to quantum tunnelling.
15 credits
Level 2
Second Term
This course explores two fundamental areas of physics and use of telescope in astrophysics. In electronics you will go from building simple circuits to designing complex logical architectures, using real components and simulation software. The optics part of the course explores fascinating optical phenomena. The practicals demonstrate the fundamental properties of light. The last part explores how imaging, computer control and data processing work in tandem with a modern telescope system.
15 credits
Level 3
First Term
Our world is made of three types of matter, Solids, Liquids and Gases. The first part of this course will explore the physical properties of these forms of matter and investigate important technological phenomena such as the flow of liquids and the causes of catastrophic failure in mechanical components. In the second half of the course, the nature of heat energy in matter will be explored. Thermodynamic behaviour will be understood in terms of Entropy and the operation of engines and their theoretical efficiency limitations will be explained.
15 credits
Level 3
First Term
We are surrounded by electromagnetic phenomena; it is not possible to understand the physical world without them. In this course we will discuss the link between electricity and magnetism, noticing that changing electric magnetic fields generate electric fields and the other way around. This will lead to the introduction of Faraday’s law, hugely relevant to understand how we generate electricity, and to the introduction of Maxwell’s correction to Ampere’s law, which will lead to the astounding result that light is an electromagnetic wave! We will finish the course by exploring how electromagnetic waves propagate and how they are originated.
15 credits
Level 3
First Term
This course will give students opportunities to develop technical and professional skills necessary for success in Honours level Chemistry/Physics and beyond. The course will include working with scientific literature, computer programming and the use of software tools in research and activities to enhance employability. Students will develop an appreciation of the power of state of the art computer programs to assist the user to understand complex data sets. Students will also become more confident in communicating and assessing scientific ideas. By considering their own skills development, students will feel more able to identify and compete for exciting graduate employment opportunities.
15 credits
Level 3
Second Term
The course aims to provide the students with the underpinning knowledge that will enable them to think constructively about phenomena that relate to the quantum structure of matter. It is intended that the students will gain a broad appreciation of the hierarchy of interactions that give rise to the energy levels of atoms and the consequent structure of the associated spectroscopic transitions. In comparison to the previous years more emphasis will be put on the general, mathematical structure of quantum theory, tackling topics such as Hilbert spaces and time independent perturbation theory.
15 credits
Level 4
Second Term
The first half of this course provides a detailed understanding of the origin of our Universe and the equations that describe its evolution. The creation of galaxies, stars - their structure, fusion processes and life cycles will be explored along with the formation of the planets. In the second half, the fundamental nature of matter will be investigated and theoretical techniques such as Lagrangians used to understand fields. Gauge field theory as an explanation of the fundamental forces of nature and the standard model will be explained.
15 credits
Level 4
Second Term
This course was designed to show you what you can do with everything you learnt in your degree. We will use mathematical techniques to describe a fast variety of “real-world” systems: spreading of infectious diseases, onset of war, opinion formation, social systems, reliability of a space craft, patterns on the fur of animals (morphogenesis), formation of galaxies, traffic jams and others. This course will boost your employability and it will be exciting to see how everything you learnt comes together.
We have detected that you are have compatibility mode enabled or are using an old version of Internet Explorer. You either need to switch off compatibility mode for this site or upgrade your browser.