production
Skip to Content

EM3015: STRESS ANALYSIS A (2020-2021)

Last modified: 05 Aug 2021 13:04


Course Overview

One of the roles of an engineer is to ensure that engineering components perform in service as intended and do not fracture or break into pieces.  However, we know that sometimes engineering components do fail in service.  Course examines how we determine the magnitude of stresses and level of deformation in engineering components and how these are used to appropriately select the material and dimensions for such component in order to avoid failure. Focus is on using stress analysis to design against failure, and therefore enable students to acquire some of the fundamental knowledge and skills required for engineering design.

Course Details

Study Type Undergraduate Level 3
Session First Sub Session Credit Points 15 credits (7.5 ECTS credits)
Campus Aberdeen Sustained Study No
Co-ordinators
  • Professor Alfred R. Akisanya

Qualification Prerequisites

  • Either Programme Level 3 or Programme Level 4

What courses & programmes must have been taken before this course?

What other courses must be taken with this course?

None.

What courses cannot be taken with this course?

Are there a limited number of places available?

No

Course Description

This course focuses on the fundamental relationship between the stresses and strains within engineering components and the load and displacements imposed at their boundaries.  Analytical, experimental and numerical (e.g. finite element method) techniques are used predominantly for 2-dimensional geometries and both elastic and plastic responses are considered.  The concepts of stress equilibrium equations, elastic constitutive laws, and strain-displacement relations are developed and used to obtain the stress solution for a range of commonly used configuration and load cases, including bending, torsion and axisymmetric loading of cylinders and shafts.  The implications of the stress solution are discussed within the context of design against failure. A wide range of mechanical and civil engineering design case studies are presented.

Hands-on practical activities are used to enhance students learning.  Students carry out laboratory experiment to determine the stress distribution in an internally pressurised cylinder. The surface strains are measured using a strain gauge rosette at different values of internal pressure.  The principal stresses are then determined using the elastic stress-strain relations, and compared with the theoretical predictions based on both the thin-wall and thick-wall assumptions.   The experimental results and the theoretical results are subsequently compared with those from computer simulation using the finite element method.  The finite element analysis also allows students to assess the limitations of the generally used plane stress assumption for thin-walled cylinders and the implications of stress concentrations at the intersection between the end caps and the main cylinder.   


In light of Covid-19 this information is indicative and may be subject to change.

Contact Teaching Time

Information on contact teaching time is available from the course guide.

Teaching Breakdown

  • 1 Computer Practical during University weeks 11, 14
  • 1 Seminar during University week9
  • 2 Seminars during University weeks 10 - 18
  • 1 Tutorial during University weeks 9, 10, 11, 12, 13, 14, 15, 16, 17, 18

More Information about Week Numbers


In light of Covid-19 and the move to blended learning delivery the assessment information advertised for second half-session courses may be subject to change. All updates for second-half session courses will be actioned in advance of the second half-session teaching starting. Please check back regularly for updates.

Summative Assessments

lab report (10%)

online open book exam (40%)

online open book exam (50%)

 

Formative Assessment

There are no assessments for this course.

Course Learning Outcomes

Knowledge LevelThinking SkillOutcome
FactualRememberILO’s for this course are available in the course guide.

Compatibility Mode

We have detected that you are have compatibility mode enabled or are using an old version of Internet Explorer. You either need to switch off compatibility mode for this site or upgrade your browser.