production
Skip to Content

EG1510: FUNDAMENTAL ENGINEERING MECHANICS (2020-2021)

Last modified: 24 Jun 2020 14:31


Course Overview

Engineering Mechanics is concerned with the state of rest or motion of objects subject to the action of forces.  The topic is divided into two parts:  STATICS which considers the equilibrium of objects which are either at rest or move at a constant velocity, and DYNAMICS which deals with the motion and associated forces of accelerating bodies.  The former is particularly applied to beams and truss structures. The latter includes a range of applications, such as car suspension systems, motion of a racing car, missiles, vibration isolation systems, and so on.

Course Details

Study Type Undergraduate Level 1
Session Second Sub Session Credit Points 15 credits (7.5 ECTS credits)
Campus Aberdeen Sustained Study No
Co-ordinators
  • Dr Adelaja Osofero

Qualification Prerequisites

  • Either Programme Level 1 or Programme Level 2

What courses & programmes must have been taken before this course?

  • Any Undergraduate Programme (Studied)

What other courses must be taken with this course?

None.

What courses cannot be taken with this course?

None.

Are there a limited number of places available?

No

Course Description

  • Newton's Second (F = ma) and Third Laws (equal and opposite reactions) are applied to the analysis of dynamic and static systems.   

    Stress, strain and elasticity will be introduced and applied, together with the principles of static equilibrium including the analysis of forces in statically determinate trusses, and of shear force and bending moment distribution in beams. The development of bending moment and shear force diagrams is introduced.

    Kinematics and kinetics of rigid bodies moving in a single plane, including rectilinear and rotational motion, will be studied. Impulse/momentum and work/energy methods will be introduced. The motion of bodies of constant and variable mass acted upon by variable forces, including impulsive ones, is examined briefly.  Practical case studies are used to illustrate the application of the concepts.

    Hands-on practical activities are used to enhance students learning.  Students carry out laboratory experiments to determine the forces in a simply-supported beam and a two-member frame, and to analyse the motion of a projectile and pendulum.  The experimental results are compared with the theoretical results and used to assess the limitations of the underpinning assumptions. 

Contact Teaching Time

Information on contact teaching time is available from the course guide.

Teaching Breakdown

  • 1 Seminar during University weeks 25 - 30, 32 - 34, 39
  • 1 Tutorial during University weeks 26 - 29, 33, 33, 38, 38
  • 2 Tutorials during University weeks 26 - 29, 33, 38

More Information about Week Numbers


In light of Covid-19 and the move to blended learning delivery the assessment information advertised for courses may be subject to change. All updates for first-half session courses will be actioned no later than 1700 (GMT) on 18 September 2020. All updates for second half-session courses will be actioned in advance of second half-session teaching starting. Please check back regularly for updates.

Summative Assessments

1. On campus laboratory sessions & follow-on exercises (20%) OR Laboratory recordings for fully online students and follow-on exercises (20%)

2. Online Timed test 1 (40%)

3. Online Timed test 2 (40%)


Resit

Re-sit of only the failed assessment component(s)

Formative Assessment

There are no assessments for this course.

Course Learning Outcomes

Knowledge LevelThinking SkillOutcome

Compatibility Mode

We have detected that you are have compatibility mode enabled or are using an old version of Internet Explorer. You either need to switch off compatibility mode for this site or upgrade your browser.