production
Skip to Content

EE3579: ELECTRICAL & ELECTRONICS ENGINEERING DESIGN (2020-2021)

Last modified: 24 Jun 2020 14:31


Course Overview

This course provides design, analysis and control of digital systems (hardware/Software) through practical implementation. This course involves three practical design projects. Each project relates with practical applications encounters in our daily life. The course begins with a discussion of different sensors commonly employed by the industry. The hardware aspects are explained with specific reference to the task of interfacing sensors to a microcontroller; the operation and programming of integrated systems is implemented using C++ code. The elements of writing well-structured software are introduced. Sustainability, environmental issue and ethics considerations are studied for embedded system design.

Course Details

Study Type Undergraduate Level 3
Session Second Sub Session Credit Points 10 credits (5 ECTS credits)
Campus Aberdeen Sustained Study No
Co-ordinators
  • Dr Fabio Verdicchio

Qualification Prerequisites

  • Either Programme Level 3 or Programme Level 4

What courses & programmes must have been taken before this course?

What other courses must be taken with this course?

None.

What courses cannot be taken with this course?

Are there a limited number of places available?

No

Course Description

Course includes:

1. Project 1 (Sensors to outputs): review of digital electronics; comparison of digital and analogue systems; review of Microcontrollers and embedded systems; Integrating components to form real-world systems: high and low level languages; programming in C; Simple programs and expected inputs and outputs; arithmetic operators, logical expressions and conditional statements; Architecture of programmable systems; set up inputs and outputs to the microcontroller; read sensors and send a digital output; multiple-sensors microcontroller based operation. (4 lectures)

2. Project 2 (Actuators): serial interfacing control interfacing; opto-coupler and DC motors; understanding a simple but complete hardware design; power supply and clock generation; H-bridge and motion direction control; switch DC motor ON/OFF with input from a push button; DC motor control by using input sensors; PWM control. Sustainability, and environmental issues in embedded system design. (4 lectures)

3. Project 3 (Automation): Examples of digital and analogue applications in an engineering context; design and build hardware and software for a given practical project; basic control implementation; using sensors to drive the control process; advanced multi-sensors control designed system impacts on environment; professional ethics in design. (3 lectures)


In light of Covid-19 this information is indicative and may be subject to change.

Contact Teaching Time

Information on contact teaching time is available from the course guide.

Teaching Breakdown

  • 2 Science Laboratories during University weeks 25 - 30, 32 - 34, 38 - 39
  • 1 Seminar during University weeks 25 - 30, 32 - 34, 38 - 39

More Information about Week Numbers


In light of Covid-19 and the move to blended learning delivery the assessment information advertised for second half-session courses may be subject to change. All updates for second-half session courses will be actioned in advance of the second half-session teaching starting. Please check back regularly for updates.

Summative Assessments

Report + Presentation 1 (50%)

Report + Presentation 2 (50%)

 

Resit

Resit failed components of assessment

Formative Assessment

There are no assessments for this course.

Course Learning Outcomes

Knowledge LevelThinking SkillOutcome

Compatibility Mode

We have detected that you are have compatibility mode enabled or are using an old version of Internet Explorer. You either need to switch off compatibility mode for this site or upgrade your browser.