production
Skip to Content

EE3043: CONTROL SYSTEMS (2018-2019)

Last modified: 22 May 2019 17:07


Course Overview

The aim of the course is to provide students with a basic understanding and concepts of control systems. The course starts by introducing basic concepts of feedback control systems using a number of practical examples. Mathematical modelling of physical systems and representing them in block diagrams with transfer functions are presented. Basic control system response characteristics (stability, transient response, steady state response) and analysis and design procedures are introduced using first and second order systems. Analysis of control systems using Routh-Hurwitz criterion, root locus, and Bode plot methods are considered.

Course Details

Study Type Undergraduate Level 3
Term First Term Credit Points 15 credits (7.5 ECTS credits)
Campus None. Sustained Study No
Co-ordinators
  • Dr Thangavel Thevar

Qualification Prerequisites

  • Either Programme Level 3 or Programme Level 4

What courses & programmes must have been taken before this course?

  • Either EE2504 Electronic Systems (Passed) or EG2504 Electronic Systems (Passed)
  • Either EG2012 Engineering Mathematics 2 (Passed) or EG2509 Engineering Mathematics 2 (Passed)
  • Any Undergraduate Programme (Studied)
  • One of Engineering (EG) (Studied) or BSc Engineering (Electrical & Electronic) (Studied) or Bachelor of Engineering in Eng (Electrical and Electronic) (Studied) or Bachelor of Engineering in Eng (Electr and Electro) Edin Col (Studied) or Master of Engineering in Electrical & Electronic Engineering (Studied) or Bachelor of Engineering in Eng (Mechanical and Electrical) (Studied) or Master of Engineering in Mechanical & Electrical Eng (Studied)

What other courses must be taken with this course?

None.

What courses cannot be taken with this course?

Are there a limited number of places available?

No

Course Description

1.    Basic System Concepts: Open loop systems; closed loop systems; feedback; disturbances; sensitivity.

2.    Models: Differential equations; characteristics of linear system; significant non-linearities; transfer functions; block diagrams and block diagram algebra;
       modelling of electromechanical and electrohydraulic components and systems; characteristic equation.

3.    Time domain performance analysis: test inputs; transient and steady state response; response parameters; poles; stability; Routh-Hurwitz; low order   
       systems and approximations.                                                                                                                

4.    Root locus analysis & design: Control system performance analysis using root locus method. Control system design using root locus method: PID controllers
       and lead-lag compensators.      

5.    Frequency domain analysis & design: Graphical presentation, Bode diagrams; frequency domain stability criterion; gain and phase margins. Frequency 
      domain compensation using Bode diagrams, lead and lag compensators.

Further Information & Notes

Available only to students following an Honours degree programme.

Lectures – 33 hours

Tutorials – 11 hours

Laboratory – 9 hours


Contact Teaching Time

Information on contact teaching time is available from the course guide.

Teaching Breakdown

More Information about Week Numbers


Details, including assessments, may be subject to change until 30 August 2024 for 1st term courses and 20 December 2024 for 2nd term courses.

Summative Assessments

1st Attempt: One written examination of three hours duration (80%) and continuous assessment (20%) based on:
Tutorial Participation/class test (10%)
Laboratory/design exercises (10%).

Resit: One written examination of three hours duration (80%), with previous coursework marks used to make up the remaining (20%).

Formative Assessment

Three practical sessions will be undertaken by the students. Assessment will be based on submission of formal reports.

Feedback

a) Students can receive feedback on their progress with the Course on request at the weekly tutorial/feedback sessions.

b) There will be tutorial sessions dedicated to feedback on sample exam paper questions at various times through the course.

c) Students requesting feedback on their exam performance should make an appointment with the course coordinator within 2 weeks of the publication of the exam results.

 

Course Learning Outcomes

None.

Compatibility Mode

We have detected that you are have compatibility mode enabled or are using an old version of Internet Explorer. You either need to switch off compatibility mode for this site or upgrade your browser.