Skip to Content


Last modified: 26 Feb 2018 16:12

Course Overview

The course focuses on applied momentum and heat transport in engineering problems.  It demonstrates how fundamental design equations can be derived for a wide range of real engineering problems (e.g. nuclear fuel rods, radiation shielding, electrical heaters etc).  The course makes it clear that engineering is the art of applying mathematics to the real world and develops the tools required to tackle a wide range of engineering challenges.

The analytical results of transport phenomena are demonstrated in simple systems before discussing more complex systems, such as boiling and condensation, which require the use of semi-empirical correlations to solve.

Course Details

Study Type Undergraduate Level 4
Session First Sub Session Credit Points 10 credits (5 ECTS credits)
Campus None. Sustained Study No
  • Dr Marcus Campbell Bannerman

Qualification Prerequisites


What courses & programmes must have been taken before this course?

  • Any Undergraduate Programme (Studied)
  • Either Programme Level 3 or Programme Level 4
  • One of EG3521 Engineering Thermodynamics (Passed) or EG3536 Thermodynamics 1 A (Passed) or EG3539 Thermodynamics 1 A (Passed) or EM3521 Engineering Thermodynamics (Passed)
  • Engineering (EG)

What other courses must be taken with this course?


What courses cannot be taken with this course?

  • EG3019 Advanced Transport Processes (Passed)
  • EG3030 Heat, Mass & Momentum Transfer (Passed)
  • EG40JK Thermodynamics 2 (Studied)
  • EM40JK Thermodynamics 2 (Studied)
  • EX3030 Heat, Mass & Momentum Transfer (Passed)

Are there a limited number of places available?


Course Description

The theory of transport phenomena is introduced through the constitutive relationships and general balance equations.  All of these concepts are introduced in vector and index notation to familiarise the students with 3D problems.  These tools are then applied to simple three-dimensional problems in momentum and mass transfer.  The course includes the fundamentals of incompressible flow, non-Newtonian flow, multiphase flow, forced/natural convection heat transfer, boiling, radiation and condensation.

Contact Teaching Time

Information on contact teaching time is available from the course guide.

Teaching Breakdown

More Information about Week Numbers

Details, including assessments, may be subject to change until 31 August 2023 for 1st half-session courses and 22 December 2023 for 2nd half-session courses.

Summative Assessments

1st Attempt: 1 two hour written examination paper (80%), and continuous assessment (20%)


Formative Assessment

There are no assessments for this course.



There is an extensive example exam question book which also comes with fully worked solutions.

The tutorial sessions are used for directed study of example problems from this booklet and students can receive feedback on their understanding of the course from the lecturer or demonstrators.

The weekly test provides feedback on student progress on the learning outcomes.

Course Learning Outcomes


Compatibility Mode

We have detected that you are have compatibility mode enabled or are using an old version of Internet Explorer. You either need to switch off compatibility mode for this site or upgrade your browser.