Mathematics with French BSc, Major-Minor Honours

Mathematics with French, BSc

Introduction

Adding a European language like French to your Mathematics degree is an excellent way to expand your employability and open up a whole range of new opportunities. The chance to live and study in France for a period of time will make a huge impact on your own personal development and future opportunities.

Contact

Email
study@abdn.ac.uk
Phone
+44 (0)1224 272090

Key Facts

UCAS Code
G1R1
Duration
4 Years
Study Mode
Full Time
Start Month
September
Learning Mode
On Campus Learning

Interested in this Degree?

How to Apply

Overview

Mathematics is a powerful, universal language used to describe situations in abstract terms. At the heart of manipulation with abstract mathematical objects are precision, logical thinking and reasoning skills. Studying and doing mathematics requires a high level of communication skills. Employers highly value these skills and the subsequent versatility of our graduates.

We offer undergraduate language courses at all levels from beginners to final year. One of the strengths of the undergraduate degree programme is its flexibility and the possibility it offers of combining French and Francophone studies with almost any other discipline, so you can tailor your degree to suit your own particular needs and interests.

As an integral part of an honours degree in French, you will spend a half-year or a full year in a French-speaking country, either working as a language assistant, or as a visiting student at one of the Erasmus and other institutions with whom we have exchange agreements (these include Lyon, Rennes, Grenoble, Réunion, Brussels, Geneva, Lausanne), or possibly on a work placement (students have undertaken successful placements organised by French with the IFP (Institute of French Petroleum) School in Paris and the Club des Langues in Anglet).

What You'll Study

Year 1

Compulsory Courses

Calculus i (MA1005)

Calculus is the mathematical study of change, and is used in many areas of mathematics, science, and the commercial world. This course covers differentiation, limits, finding maximum and minimum values, and continuity. There may well be some overlap with school mathematics, but the course is brisk and will go a long way quickly.

Algebra (MA1006)

This course introduces the concepts of complex numbers, matrices and other basic notions of linear algebra over the real and complex numbers. This provides the necessary mathematical background for further study in mathematics, physics, computing science, chemistry and engineering.

Calculus II (MA1508)

The aim of the course is to provide an introduction to Integral Calculus and the theory of sequences and series, to discuss their applications to the theory of functions, and to give an introduction to the theory of functions of several variables.

This provides the necessary mathematical background for further study in mathematics, physics, computing science, chemistry and engineering.

Set Theory (MA1511)

Set theory was introduced by Cantor in 1872, who was attempting to understand the concept of "infinity" which defied the mathematical world since the Greeks. Set Theory is fundamental to modern mathematics - any mathematical theory must be formulated within the framework of set theory, or else it is deemed invalid. It is the alphabet of mathematics.

In this course we will study naive set theory. Fundamental object such as the natural numbers and the real numbers will be constructed. Structures such as partial orders and functions will be studied. And of course, we will explore infinite sets.

Professional Skills Part 1 (PD1001)

This course, which is prescribed for level 1 students and optional for level 2 students, is studied entirely online and covers topics relating to careers and employability, equality and diversity and health, safety and wellbeing. During the course you will learn about the Aberdeen Graduate Attributes, how they are relevant to you and the opportunities available to develop your skills and attributes alongside your University studies. You will also gain an understanding of equality and diversity and health, safety and wellbeing issues. Successful completion of this course will be recorded on your Enhanced Transcript as ‘Achieved’ (non-completion will be recorded as ‘Not Achieved’). The course takes approximately 3 hours to complete and can be taken in one sitting, or spread across a number of weeks and it will be available to you throughout the academic year.

Optional Courses

  • Select 15 credit points from courses of choice.

One of the following:

Beginner:

  • Level 1 French Lang. 1A (FR1023)
  • Level 1 French Lang. 1B (FR1523)
  • Intro to Lit. and Culture of Modern France 1 (FR1021) or Intro to Lit. and Culture of Modern France in context (FR1527)

Intermediate/Advanced:

  • Lit. and Culture of Modern France 1 (FR1022) or Lit. and Culture of Modern France in Context (FR1526)
  • Level 1 French Lang. 2A (FR1024) or Level 1 French Lang. 3A (FR1025)
  • Level 1 French Lang. 2B/3B (FR1524)
Level 1 French Language 1a: Beginners / Near Beginners (standard Grade / Gcse or Below) (FR1023)

This intensive language course is designed for students who have little or no previous knowledge of French.

Level 1 French Language 1b: Beginners / Near Beginners (FR1523)

This course builds on the work done in FR1023, providing students with an adequate command of French language to allow them the possibility of continuing their studies into level 2 and Honours.

Introduction to Literature and Culture of Modern France 1 (FR1021)

This course offers students who are registered for the beginners' course in French language an introduction to twentieth century French culture and society through the study of films, short prose texts and poetry. The course is organised around the broad themes of childhood and adolescence, gender, sexuality and love and marginalisation in contemporary France. The texts will be studied in translation or with subtitles.

Literature and Culture of Modern France 1 (FR1022)

This course offers students with intermediate or good knowledge French language an introduction to twentieth century French culture and society through the study of films, short prose texts and poetry. The course is organised around the broad themes of childhood and adolescence, gender, sexuality and love and marginalisation in contemporary France.

Level 1 French Language 2a: Intermediate (FR1024)

This course is intended for students who have studied French to Higher or equivalent level, but whose knowledge may be rusty. It will enable them to consolidate and extend their knowledge of French, written and spoken.

Level 1 French Language 3a: Proficient (FR1025)

This course is intended for students who have studied French to at least Higher or equivalent level, or beyond to A level or Advanced Higher. It will enable them to consolidate and extend their knowledge of French, written and spoken.

Level 1 French Language 2b / 3b: Intermediate / Proficient (FR1524)

This course is intended for students who have studied French to the equivalent of Scottish Higher or beyond. Building on the work done in the first semester in FR1024 or FR1025, it seeks to enable students to consolidate and extend their knowledge of French, written and spoken.

Year 2

Compulsory Courses

Linear Algebra i (MA2008)

Linear algebra is the study of vector spaces and linear maps between them and it is a central subject within mathematics.

It provides foundations for almost all branches of mathematics and sciences in general. The techniques are used in engineering, physics, computer science, economics and others. For example, special relativity and quantum mechanics are formulated within the framework of linear algebra.

The two courses Linear Algebra I and II aim at providing a solid foundation of the subject.

Analysis i (MA2009)

Analysis provides the rigourous, foundational underpinnings of calculus. It is centred around the notion of limits: convergence within the real numbers. Related ideas, such as infinite sums (a.k.a. series), continuity, and differentiation, are also visited in this course. Care is needed to properly use the delicate formal concept of limits. At the same time, limits are often intuitive, and we aim to reconcile this intuition with correct mathematical reasoning. The emphasis throughout this course is on rigourous mathematical proofs, valid reasoning, and the avoidance of fallacious arguments.

Analysis II (MA2509)

Analysis provides the rigourous, foundational underpinnings of calculus. This course builds on the foundations in Analysis I, and explores the notions of Riemann integrability, Cauchy sequences, sequences of functions, and power series. The techniques of careful rigourous argument seen in Analysis I will be further developed. Such techniques will be applied to solve problems that would otherwise be inaccessible. As in Analysis I, the emphasis of this course is on valid mathematical proofs and correct reasoning.

Optional Courses

  • Linear Algebra II (MA2508) or Advanced Calculus (MA2507)
  • Select 30 credit points from courses of choice.

Select one of the following options:

Beginner:

  • Advanced Introductory French Language 1 (FR2012)
  • Advanced Introductory French Language 2 (FR2512).

Intermediate/Advanced:

  • Advanced French Language 1 (FR2002)
  • Advanced French Language 2 (FR2502).
Advanced Calculus (MA2507)

This is a course in multivariable calculus. As the name suggests, it generalises familiar concepts from calculus (such as limits, derivatives, integrals and differential equations) to situations with many variables.

In addition to lectures and tutorials, there will be practical training through several computer sessions. Recommended to mathematicians and physicists.

Advanced Introductory French Language 1 (FR2012)

This second year French language course which runs in the first half-session is only open to students who have passed FR1523. It will improve their written, oral and aural skills, and is one of the two second year French language courses (along with FR2512) that has to have passed to be allowed into the French honours Programme.

Advanced Introductory French Language 2 (FR2512)

This second year French language course which runs in the second half-session is only open to students who have followed FR2012. It will improve their written, oral and aural skills, and is one of the two second year French language pre-requisite courses (along with FR2012) that one must have passed to be allowed into the French honours Programme.

Advanced French Language 1 (FR2002)

This second year French language course which runs in the first half-session is only open to students who have passed FR1524. It will improve their written, oral and aural skills, and is one of the two second year French language courses (with FR2502) that one has to have passed to be allowed into the French honours Programme.

Advanced French Language 2 (FR2502)

This second year French language course which runs in the second half-session is only open to students who have followed FR2002. It will improve their written, oral and aural skills, and is one of the two second year French language pre-requisite courses (along with FR2002) that one must have passed to be allowed into the French honours Programme.

Year 3

Compulsory Courses

Rings and Fields (MX3531)

Many examples of rings will be familiar before entering this course. Examples include the integers modulo n, the complex numbers and n-by-n matrices with real entries. The course develops from the fundamental definition of ring to study particular classes of rings and how they relate to each other. We also encounter generalisations of familiar concepts, such as what is means for a polynomial to be prime.

Metric and Topological Spaces (MX3036)

The aim of the course is to introduce the basic concepts of metric spaces and their associated topology, and to apply the ideas to Euclidean space and other examples.

An excellent introduction to "serious mathematics" based on the usual geometry of the n dimensional spaces.

Non - Honours Level 3 French Language 1 (FR3090)

This Non-Honours Level 3 French language course, whose pre-requisites are FR2502 or FR2512 , runs over the full session and is open to students following a Designated Degree in French Studies, LLB (French or Belgian law), European Studies (with one language) or any Degree with French language as a minor .

This course will improve French language skills in all four areas of listening, speaking, reading and writing, whilst increasing grammatical and lexical knowledge, as well as sensitivity to linguistic variety.​

It carries 30 credits and is assessed by way of six equally weighted assignments.

Differential Equations (MX3536)

Differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology. In this course we will study the concept of a differentialk equation systematically from a purely mathematical viewpoint. Such abstraction is fundamental to the understanding of this concept.

Optional Courses

  • Optimisation and Numerical Analysis (MX3022) or Mechanics A (MX3023)
  • Select a further 15 credit points from courses of choice.

Year 4

Compulsory Courses

Project (MX4023)

The 4th year project is a good opportunity to do some research in an area of mathematics which is not covered in any other course. A choice of project topics will be made available to students before the start of the semester. Students will be expected to have regular meetings with their project supervisor. A written report should be submitted at the end of the course, with a presentation taking place shortly afterwards. Students should be able to demonstrate in the project that they have a good understanding of the topic they covered, often through working out examples.

Galois Theory (MX4082)

Galois theory is based around a simple but ingenious idea: that we can study field extensions by instead studying the structure of certain groups associated to them. This idea can be employed to solve some problems which confounded mathematicians for centuries, including the impossibility of trisecting an angle with ruler and compass alone, and the insolubility of the general quintic equation.

Optional Courses

  • Select 60 credit points from level 4 Mathematical Sciences courses.
  • Select 30 credit points from courses of choice, including those from Franch Studies.

We will endeavour to make all course options available; however, these may be subject to timetabling and other constraints. Please see our InfoHub pages for further information.

Undergraduate Open Day

Our next Open Day will be on

Find out more

How You'll Study

Learning Methods

  • Lectures
  • Tutorials
  • Research
  • Individual Projects

Assessment

Students are assessed by any combination of three assessment methods:

  • Coursework such as essays and reports completed throughout the course.
  • Practical assessments of the skills and competencies they learn on the course.
  • Written examinations at the end of each course.

The exact mix of these methods differs between subject areas, years of study and individual courses.

Honours projects are typically assessed on the basis of a written dissertation.

Why Study this Degree?

Why French

  • French at Aberdeen gained the highest possible rating of ‘Excellent’ in the last national Scottish Teaching Quality Assessment.
  • A vibrant international community on campus and across Aberdeen and north-east Scotland, with many French and French-speaking students, staff and activities on campus and across the region.
  • A dynamic French Society, organising social and topical events throughout the year, and a brilliant way to get to know other students studying or speaking French.
  • The spectacular, award-winning Sir Duncan Rice Library, with stunning study facilities, state-of-the-art learning technology, and a first-class collection of French books and films for your course.
  • A packed campus programme of events, exhibitions, invited speakers and the popular annual May Festival which welcomes international figures, experts, authors and scientists to campus every spring, with an increasingly European flavour.
  • Your year abroad as a language assistant or visiting student at locations including Lyon, Rennes, Grenoble, Réunion, Brussels, Geneva, Lausanne, the IFP (Institute of French Petroleum) School in Paris and the Club des Langues in Anglet.
  • International recognition as a centre for study and research in French, with research covering not only France, but also French-speaking Africa and the Caribbean.

Why Mathematics

  • We offer a challenging syllabus which emphasises reasoning, rigour and the argumentative side of mathematics.
  • Our ambition is to give you a sound preparation for a career in which mathematics plays a role, whether it be in research or through applications.
  • We offer excellent student experience delivered by enthusiastic staff combined with small class sizes, approximately 25 or less in the Honours years.
  • We offer a degree in Pure Mathematics and degree in Applied Mathematics to suit your taste and interests. You will only need to make the choice in your 3rd year.
  • We offer a range of choices with your degree programme, across both the sciences (BSc) and the Arts (MA). You can focus your attention entirely on Mathematics or you can spread your interests to combine it with other subjects.
  • We offer attractive joint degrees with Economics, Physics and other disciplines, including languages.
  • The department run a number of key events and seminars throughout the year, giving you the chance to network with students and academics.
  • Interactions with applied maths are fostered through our involvement in the Institute for Pure and Applied Mathematics, comprised of the Department of Mathematics together with the Institute for Complex Systems and Mathematical Biology.

Fees and Funding

You will be classified as one of the fee categories below.

Fees and Funding Table for HOME, EU, RUK and International Students
Nationality Status Amount
Home / EU All Students £1,820
RUK All Students £9,000
International Students Students admitted in 2014/15 £15,700
International Students Students admitted in 2015/16 £16,200
International Students Students admitted in 2016/17 £17,200
  • In exceptional circumstances there may be additional fees associated with specialist courses, for example field trip courses. Any additional fees for a course can be found in our Catalogue of Courses.
  • For more information about tuition fees for this programme, including payment plans and our refund policy, please visit our InfoHub Tuition Fees page.

Funding

View all funding options in our Funding Database.

Entry Requirements

You will find all the information you require about entry requirements on our dedicated 'Entry Requirements' page. You can also find out about the different types of degrees, offers, advanced entry, and changing your subject.

Qualifications

SQA Highers - AABB*
A Levels - BBB*
IB - 32 points, including 5,5,5 at HL*
ILC - AAABB*
*SQA Higher or GCE A Level or equivalent qualification in Mathematics is required.

Advanced entry - is considered on an individual basis depending on prior qualifications and experience. Applicants wishing to be considered for Advanced entry should contact directly the Director of Studies (Admissions) at our Recruitment and Admissions office.

Further detailed entry requirements for Sciences degrees.

Language Requirements

To study for a degree at the University of Aberdeen, it is essential that you can speak, understand, read, and write English fluently. Read more about specific English Language requirements here.

Students undertaking Education, Medicine or Dentistry programmes must comply with the University's fitness to practise guidelines.

Careers

There are many opportunities at the University of Aberdeen to develop your knowledge, gain experience and build a competitive set of skills to enhance your employability. This is essential for your future career success. The Careers Service can help you to plan your career and support your choices throughout your time with us, from first to final year – and beyond.

Key Information Set (KIS)

Unistats draws together comparable information in areas students have identified as important in making decisions about what and where to study. The core information it contains is called the Key Information Set.

You can compare these and other data for different degree programmes in which you are interested.

Contact

Address
Student Recruitment & Admissions Service
University of Aberdeen
University Office
Regent Walk
Aberdeen

AB24 3FX
Email
Phone
+44 (0)1224 272090
What do you think of our new Prospectus?
Feedback