We have a degree programme for every area and to suit every interest.
Business strategy, law, planning, finance, politics, economics, data management, project management.

Offshore / Onshore renewable energy – engineering, law, economics / finance, strategy, geoscience.

Environmental monitoring / science – law, environmental science, chemistry, planning, decommissioning.

Subsea engineering, structures, installation, safety, maintenance, decommissioning.

Exploration – geophysics, petrophysics, production geology, regional exploration, sedimentology, reservoir engineering.

Upstream – oil and gas production, petroleum engineering, oil and gas engineering, drilling, law, economics, planning, politics.

Installation / Maintenance – safety engineering, process safety, structural engineering, maintenance, law, politics, decommissioning.

Downstream – chemical processing, law, business, sales, economics, politics, oil and gas engineering.
For more information on the great study opportunities at the University of Aberdeen and how you can propel the next stage of your career visit: abdn.ac.uk/energy
Introducing the

University of Aberdeen

Our experience of delivering a wide range of energy-related degree programmes, coupled with our world-class energy-related research, and of course our geographical location in “Europe’s Energy Capital” means we truly can bring our students closer to energy.

We offer energy-related Masters programmes across business, law, engineering, geosciences, natural sciences and computing.

We are one of the very few universities in the UK to be able to offer such a breadth of programmes, backed up with the academic knowledge and experience. A strong interdisciplinary focus in our teaching makes our graduates more attractive. We are also constantly moving with the industry, by refining programme content and developing new programmes in line with industry demand, ensuring our graduates have a long-term career in their chosen sector and discipline.

Coming Soon – National Centre for Decommissioning

The University of Aberdeen is the recognised leader in offshore oil and gas decommissioning and is home to the newly established National Centre for Decommissioning. Established with government support, this multi-million-pound centre of excellence works in partnership with government and industry to deliver research and training aimed at transforming oil and gas decommissioning and mature field management.

The MSc Decommissioning (p37) is the world’s first Master’s degree programme in decommissioning oil rigs, platforms and offshore structures and covers all aspects of decommissioning, including engineering, economics, law and environmental impact.
Since the 1960s and the early days of North Sea oil and gas exploration and production in the UK, Aberdeen has become recognised as a global energy city. It is the birthplace of a number of global leading industry organisations and a UK base for many of the world’s energy giants, rivaling other major cities as a world-class centre of oil and gas upstream expertise.

Aberdeen is recognised globally as a centre for technological development, innovation and testing, which has made many of the globally adopted, modern day exploration and production techniques possible. A centre of subsea engineering excellence, the city is a successful exporter of technology, innovation and of course human talent and skills throughout the world.

Naturally, this level of expertise has also positioned Aberdeen as a key city that will help support, drive and grow the emerging renewable energy industries. This, coupled with the future growth of decommissioning projects and the potential development of carbon capture initiatives, means Aberdeen will continue to have a major impact on the global energy industry for generations to come.

Energy companies with significant operations in Aberdeen include:

- Baker Hughes – a GE Company
- BP
- Chevron
- Dana Petroleum
- Equinor
- Halliburton
- Maersk
- Petrofac
- Repsol Sinopec Resources
- Royal Dutch Shell
- Schlumberger
- Subsea 7
- Total
- Wood
Aberdeen is a key city that will help support, drive and grow the emerging renewable energy industries.
Better connected with industry
As an institution we are unique.

We have built strong links with industry over a number of years and this directly benefits our students in key areas.

- Industry Advisory Boards supporting degree development
- Work placement opportunities
- Industry supported student projects
- Decommissioning Centre of Excellence
- Guest lecturing and industry seminars
- Industry funded events
- Industry visits and workshops
Online Learning

Our flexible approach to learning means you can study full-time on campus or choose from a range of more flexible online options to fit around your work or family commitments.

Through online learning, you can study for an internationally recognised qualification, without being on campus. Online learning may be the ideal option for you if you wish to pursue a qualification that is equally as rigorous and valuable as an on-campus programme while studying at your own pace and at times that are most convenient for you.

Online Masters Programmes

Studying an online Master’s degree programme at the University of Aberdeen gives you all the practical advantages of fitting your learning around your location, work and personal commitments. Our online programmes are taught by the same outstanding academics as our on-campus programmes – the only difference is the flexible mode of delivery. Learning takes place at a time and place most convenient for our students.

You will be guided through your programme with online lectures, materials, case studies, projects, and videos, while also accessing various online resources through our award-winning Sir Duncan Rice Library, including interactive discussions and support, as you gain the skills to take your career to the next level.

Short Courses

We also offer individual Short Courses that you can take online for continuous professional development (CPD) or to build up towards a full postgraduate qualification. Our online short courses are self-contained units of learning that are taught and assessed to the same quality as our degree programmes. Students taking individual Short Courses benefit from the same level of support as those taking full postgraduate programmes, including access to a full suite of learning resources.

Find out more at www.abdn.ac.uk/online
Introducing

Energy Business

Our Business School delivers a diverse and flexible range of MSc degree programmes, including a number of hugely popular energy-related degree programmes.

Our MSc Petroleum, Energy Economics and Finance programme is one of the most respected programmes of its kind attracting the very best talent from around the globe each year.

Our MBA Energy Management is designed specifically to help develop business leaders of the future. It is perfectly placed in Europe’s Energy Capital to access the relevant knowledge that future leaders will require.

World renowned oil and gas economics expert Prof. Alex Kemp, actively teaches on our programmes so you get the chance to learn from the very best.

We are actively connected with the oil and gas, and wider energy industries. This means our students gain access to the latest industry thinking, challenges and solutions.

We also match our students with industry mentors which means you will gain invaluable one-to-one support from a professional already working in your field of interest.

We have students of 45 different nationalities studying in the School alone. This creates a positive learning environment and gives you the opportunity to make friends from around the world.

The programmes

- MBA Energy Management
- MSc Petroleum, Energy Economics & Finance
- MSc Strategic Studies and Energy Security
- MSc Law & economics of Oil and Gas
- Online Study in Energy Economics and Finance
Five months into the programme and I have begun developing a business idea with the support of an Aberdeen business incubator. There are so many opportunities in the city which makes it a great place to study.
MBA ENERGY MANAGEMENT

The increasingly complex and competitive world of energy calls for talented professionals. Our programme has been designed to enhance your talent by developing both your knowledge base and skills to put this knowledge into practice. Our MBA Energy Management will help you advance your career in the energy industry.

Located in the Energy Capital of Europe, the University of Aberdeen and its Business School plays a major role in the industry through research, consultancy, training and development. Our industry-led MBA programme stands alone in the UK in developing the next generation. As the curriculum was created in consultation with leading industry professionals and organisations, the programme is aligned to industry competencies and satisfies the skills required.

To reinforce our connections with industry, the programme utilises senior industry practitioners as Honorary Executive Fellows working alongside academics. As well as helping to ensure that the modules you will study are industry relevant, these Executive Fellows will also play a mentoring role, helping you to develop yourself as industry ready.

Is this the right course for me?
You already know the industry you wish to move into – or you are already there – and actively want to invest in a route, a deeper level of study, that accelerates your career in the high-growth global energy industry. By joining the programme, you will:

- Prepare to take on higher-level positions in the energy industry
- Connect with industry and specialist experts and obtain a global network
- Obtain core competency skills in areas such as leadership, project management, finance and operations management
- Be taught by academics with an international profile

What you will study
The programme is continuously assessed through portfolios of practice-focused assignments. These assignments provide you with evidence of industry relevant skills which will serve as a professional development record, invaluable in supporting your career progression.

The programme is delivered through lectures, workshops, role-play and simulation exercises. These modes emphasise action-oriented learning.

Core Courses
- Business Strategy
- Operations and Project Management
- Business and Money
- Value and Markets
- The Leadership Challenge
- Business Model Innovation
- Managing Self and Others
- Managing Change Innovation

Elective Courses
- Supply Chain Management
- Talking to Teams
- Energy Finance

The Graduate Business School has a track record of delivering MBA programmes for over 10 years. The MBA Energy Management programme is a high calibre, relevant and exciting energy focussed programme, built upon our established energy industry research and consultancy excellence.

Our research intensive expertise is exemplified by world renowned energy economist, Professor Alex Kemp. Moreover, 90% of our School faculty have PhDs – which means you’ll benefit from teaching by leading professors with research and professional expertise as well as close links to industry.

What do your graduates go on to do and how many of them find relevant employment?
Our Alumni have enjoyed much success in the workplace with University of Aberdeen Business School students securing employment with:

Bureau Veritas UK & Ireland, EY, KPMG, Royal Bank of Scotland, Stork Technical Services, Talisman Energy, Google, TAQA, BP, Npower, Citibank and Centrica to name a few.

School/department
Business School

Duration
12 months full-time
27 months online

Intake
September and January

Entry requirements
Minimum upper second class honours degree. 3-5 years work experience, depending on role, with excellent management skills – either with or without specific energy-sector experience. If you have accrued significant work experience in one industry and know your future lies in the thriving energy sector, why not specialise with experts on our MBA Energy Management programme, who know both general management practices as well as skills unique to this industry?

Alternatively, if you’re looking to change your career pathway and find an opportunity to make that first step into this industry, then this specialist MBA is perfectly poised to give you a helping hand in your career, leveraging your foundation of good management skills.

The English language requirements is an IELTS of 6.5 with 6.0 in writing and reading (or equivalent TOEFL iBT or PTE).

For more information: www.abdn.ac.uk/study/international/english-requirements.php
MSc (ECON) PETROLEUM, ENERGY ECONOMICS AND FINANCE

Addressing the need for economic and finance skills, required for complex decision-making in the global petroleum and energy industries.

The University has an international reputation for teaching and research in economics and in petroleum economics in particular, with the work in this latter area led by Professor Alexander Kemp OBE. Graduates from this programme have gone on to secure distinguished careers across the energy industry, with employers such as BP, Ghanaian Petroleum Commission, Oil and Gas UK and Petrofac to name a few.

What you will study

- Economic Analysis for Energy – Equipping you with an understanding of micro and macroeconomic modelling techniques.
- Accounting – Providing you with an understanding of accounting information and financial reporting and introducing key aspects of financial analysis.
- Introduction to Corporate Finance for Energy – Equipping you with the analytical skills in order to understand the implications of corporate financing decisions and the theoretical underpinnings of corporate finance theory.
- Quantitative Methods for Energy Economics – Introducing you to the statistical and quantitative methods used in economics and finance.
- Introduction to Energy and Petroleum Economics – Applying economic and finance principles to examine key issues in the petroleum and energy industries.
- Business Strategy – Providing a systematic approach to strategic thinking (game theory) and using its concepts to understand how businesses interact strategically.
- Real Options and Decision Making – Developing your analytical skills and understanding concerning investment decisions under uncertainty. You are introduced to methods of analysis of the benefits and costs of investment decisions and provided with an appreciation of how these are useful to decision makers in the petroleum and energy industries.
- Issues in Energy Petroleum Economics – The further application of economics to key issues in the energy and petroleum sectors.
- Recent Topics have included – Petroleum Policies, Economic rents and their collection of to the state, licensing and other policy issues, to name a few.
- Empirical Methods In Energy Economics – Applying a range of empirical methods to issues in energy including analysis of energy spot and future prices using time series econometric techniques and economic evaluation using Monte Carlo simulation.

Dissertation

Dissertation Projects are completed during the summer months and cover a wide range of topics examining various economic and finance issues in the petroleum and energy industries. Opportunities also exist for you to undertake your dissertations in association with companies involved in the energy industry. This is a tremendous opportunity to get industry experience and build up your network of industry contacts.

Students will also summarise their dissertation in form of both posters, which are displayed to external audiences and a short oral presentation. You are given the opportunity to present your dissertation to fellow students and an invited audience – including local energy companies.

How you will be taught

As well as formal teaching, you will benefit greatly from visiting speakers currently working in the Energy Industry.

How you will be assessed

A combination of in-course assessments, examinations, plus dissertation.

Course info www.abdn.ac.uk/pgt/peef
School info www.abdn.ac.uk/business
General info www.abdn.ac.uk/study

facebook.com/UoaBusSchool
@uoabusschool
study@abdn.ac.uk
MSc STRATEGIC STUDIES AND ENERGY SECURITY

This programme draws in the University of Aberdeen’s expertise in international security and the energy sector to deliver detailed understanding of global energy security, in the context of how different countries and regions operate today.

The MSc Strategic Studies and Energy Security combines the study of national and internal security with courses in energy politics, energy economics and energy law to equip students with the practical skills needed to understand the character of international security as it relates to energy security.

The aim of this programme is to understand the costs and benefits of the strategies deployed, often of a military nature, to address energy security issues and to enhance our understanding of the difficulties encountered when attempting to assess the prospects for stability and security in key, pivotal ‘energy-rich’ and ‘energy-poor’ regions of the international system. In addition, you will study the enduring influence of certain core strategic issues, inherent in the management of power and coercion, on the international system regardless of levels of economic and social development.

The University of Aberdeen plays a central role in developing new technology across the energy sector while also works closely with industry, government and regulatory bodies in developing energy policy and frameworks.

Our location at the heart of the Energy Capital of Europe means that our students benefit from direct industry involvement with our programmes, including industry advisory panels, guest lectures, field trips, site visits, networking and careers events, and industry supported student projects.

What you will study
- Strategic Theory
- Energy Politics
- Energy Economics
- Global Security Issues
- International Energy Security
- Dissertation in Strategic Studies

How You Will Be Taught
As well as formal teaching, you will benefit greatly from visiting speakers currently working in the energy industry.

How you will be assessed
Courses are assessed by continuous assessment or by written examination or a combination of these, as prescribed by each course co-ordinator.

School/department
Social Science

Duration
12 months full-time (MSc)
24 months part-time (MSc)

Intake
September and January

Entry requirements
An upper second class honours degree or a recognised equivalent in International Relations, Politics, History, Geography, Economics, Law and cognate disciplines such as Business Studies.

The English language requirements is an IELTS of 6.5 with 6.0 in writing and reading (or equivalent TOEFL iBT or PTE).

For more information:
www.abdn.ac.uk/study/international/english-requirements.php

Course info www.abdn.ac.uk/pgt/sses
School info www.abdn.ac.uk/socsci
General info www.abdn.ac.uk/study

facebook.com/universityofaberdeen
@aberdeenuni
study@abdn.ac.uk
MSc LAW AND ECONOMICS OF OIL AND GAS

Our unique Masters programme combines the disciplines of Economics and Law to prepare you for a specialist career in the oil and gas sector.

Our unique Masters programme combines the disciplines of Economics and Law to prepare you for a specialist career in the oil and gas sector. We recognise that the global oil & gas sector has evolved in a complex environment characterised by various influential factors that bear significant influence on decision making in projects and government policies, therefore a strong understanding of the relative economic dynamics, laws and regulations is essential.

The University of Aberdeen is an established leader in teaching and research in the field of energy and our new MSc builds on our considerable strengths in these areas. Students will benefit from interacting with world leading researchers in the field of energy economics and law such as, Professor Alex Kemp OBE, and Professor John Paterson. You will also have direct access to the Aberdeen Institute of Energy, powered by the University and be able to utilise our strong links with industry and policymakers.

We draw a highly distinctive mix of students from 40+ nationalities, spanning both disciplines. This programme, therefore, allows you to look at the energy business challenges from across disciplines, with an integrated perspective. It will allow you to bridge the commercial and legal departments of oil companies as well as the governmental ministries.

Our MSc in Law and Economics of Oil and Gas is intellectually challenging and provides career-ready credentials to help increase your employability in legal, financial and commercial aspects of oil and gas sector.

Careers

Our MSc in Law & Economics of Oil and Gas will build your expertise and grow your contacts. Upon completion, you will be equipped with the intellectual, critical and practical skills that are fundamental to successful careers in the area of oil and gas. Career opportunities range from positions with oil and gas companies, with international law firms servicing the industry and also with government ministries.

Equally, you can choose to use the programme as a step towards your PhD and beyond that, to work in the academic world. As Law and Economics touch so many parts of public life, they have become well regarded as stepping-stones should you perhaps wish to enter politics, business, international finance or banking. Employers are increasingly valuing the transferable skills graduates can bring to industry and other international business organisations, skills that include research, critical thinking, problem solving, effective communication, and diplomacy.

Career opportunities

- Commercial Adviser
- Energy and Business Consultant
- Investment Analyst
- Market Analyst
- Oil and Gas Associates
- Project Manager

What you will study

Students will have the opportunity to explore a range of themes to broaden their knowledge and sharpen their critical analysis of current global debates and challenges, these include:

- Licensing and upstream taxation
- Investment appraisal techniques and risk analysis
- Health, safety and environmental regulation
- Crude oil market, determinants of oil supply and demand
- Principles of accounting
- Principals and features of oil and gas contracts

School/department
School of Law

Duration
12 months full-time (MSc)
24 months part-time (MSc)

Intake
September

Entry requirements

The minimum entry requirements for this programme is a degree at 2:1 (upper second class) UK Honours level (or a degree from a non-UK institution which is judged by the University to be of equivalent worth).

The English language requirements is an IELTS of 6.5 with 6.0 in writing and reading (or equivalent TOEFL iBT or PTE).

For more information:
www.abdn.ac.uk/study/international/english-requirements.php

Course info www.abdn.ac.uk/pgt/sses
School info www.abdn.ac.uk/socsci
General info www.abdn.ac.uk/study

Facebook: facebook.com/universityofaberdeen
@aberdeenuni
Email: study@abdn.ac.uk
The aim of the programme is to provide a comprehensive study of energy economics analysing key issues such as, energy demand and supply, oil price behaviour and renewables. Students will develop their knowledge of the key micro and macroeconomic modelling techniques, as well as gain an in-depth understanding of financial analysis and its application in the energy sector.

Our academics are experts in Energy Economics and along with our Energy industry partners, will help our students to:

- Obtain insights into commercially-oriented analysis
- Develop quantitative skills to better utilize data to inform strategic decision making
- Learn to analyse energy markets and the micro and macro impacts of various stimuli

What You’ll Study

- Quantitative Methods for Energy Economics
- Economics Analysis for Energy Markets
- Investment Analysis for Energy
- Petroleum Economics and Policy

Each module has been designed to provide students with the ability to expand their knowledge of world energy markets and develop an in-depth understanding of the relevant economic theory.

Why Study Online study in Energy Economics and Finance?

The global energy sector is a complex environment characterised by various influential factors such as, resource constraints, government policy and international agreements. In order to conduct such industry and policy actions successfully, a comprehensive knowledge of the relative economics is essential. Our programme is designed to provide students with the fundamental economic skills and knowledge required for a successful career in the energy industry or governmental organisations.

Learners will be able to enrol in to any module anytime. Each module can be taken individually as a Professional Development in “module name” and learners will have 18 months to complete each of the modules. This means that learners will have the freedom to study at their own pace and order in which they will study the available modules.

Careers

This programme is distinctive in ways that is attractive to students who would like a career in government, consultancy, and environmental or regulatory departments of energy and other companies or professionals of the energy sector who want to develop their career. It offers a flexibility of learning through online provision and the option of progression to the on-campus program, not seen in competing programs.

The programme reaches beyond corporate interest alone to governments and NGO's, who also need high quality graduates with an excellent understanding of the energy sector.

Why Study Online study in Energy Economics and Finance?

1. Obtain insights into commercially-oriented analysis
2. Develop quantitative skills to better utilize data to inform strategic decision making
3. Learn to analyse energy markets and the micro and macro impacts of various stimuli

What You’ll Study

- Quantitative Methods for Energy Economics
- Economics Analysis for Energy Markets
- Investment Analysis for Energy
- Petroleum Economics and Policy

Each module has been designed to provide students with the ability to expand their knowledge of world energy markets and develop an in-depth understanding of the relevant economic theory.

Why Study Online study in Energy Economics and Finance?

The global energy sector is a complex environment characterised by various influential factors such as, resource constraints, government policy and international agreements. In order to conduct such industry and policy actions successfully, a comprehensive knowledge of the relative economics is essential. Our programme is designed to provide students with the fundamental economic skills and knowledge required for a successful career in the energy industry or governmental organisations.

Learners will be able to enrol in to any module anytime. Each module can be taken individually as a Professional Development in “module name” and learners will have 18 months to complete each of the modules. This means that learners will have the freedom to study at their own pace and order in which they will study the available modules.

Careers

This programme is distinctive in ways that is attractive to students who would like a career in government, consultancy, and environmental or regulatory departments of energy and other companies or professionals of the energy sector who want to develop their career. It offers a flexibility of learning through online provision and the option of progression to the on-campus program, not seen in competing programs.

The programme reaches beyond corporate interest alone to governments and NGO's, who also need high quality graduates with an excellent understanding of the energy sector.

Why Study Online study in Energy Economics and Finance?

1. Obtain insights into commercially-oriented analysis
2. Develop quantitative skills to better utilize data to inform strategic decision making
3. Learn to analyse energy markets and the micro and macro impacts of various stimuli

What You’ll Study

- Quantitative Methods for Energy Economics
- Economics Analysis for Energy Markets
- Investment Analysis for Energy
- Petroleum Economics and Policy

Each module has been designed to provide students with the ability to expand their knowledge of world energy markets and develop an in-depth understanding of the relevant economic theory.

Why Study Online study in Energy Economics and Finance?

The global energy sector is a complex environment characterised by various influential factors such as, resource constraints, government policy and international agreements. In order to conduct such industry and policy actions successfully, a comprehensive knowledge of the relative economics is essential. Our programme is designed to provide students with the fundamental economic skills and knowledge required for a successful career in the energy industry or governmental organisations.

Learners will be able to enrol in to any module anytime. Each module can be taken individually as a Professional Development in “module name” and learners will have 18 months to complete each of the modules. This means that learners will have the freedom to study at their own pace and order in which they will study the available modules.

Careers

This programme is distinctive in ways that is attractive to students who would like a career in government, consultancy, and environmental or regulatory departments of energy and other companies or professionals of the energy sector who want to develop their career. It offers a flexibility of learning through online provision and the option of progression to the on-campus program, not seen in competing programs.

The programme reaches beyond corporate interest alone to governments and NGO's, who also need high quality graduates with an excellent understanding of the energy sector.
The people I met in Aberdeen made my experience truly **worthwhile** and it was amazing to meet new individuals and create lifelong **connections**.

Lecticia Munguambe
MSc Petroleum, Energy Economics and Finance
Introducing

Energy Law

Our School of Law hosts the highly respected Aberdeen University Centre for Energy Law (AUCEL) comprising one of the largest and most able teams of energy faculty in any European law school.

The research centre was created in order to promote the research activities of the many members of the School having an interest in Energy Law matters, as well as fostering an environment for collaborative work.

The Centre also provides a broad range of study options for students wishing to specialise in the field of energy law and for professionals who are either already working in the sector, or who are interested in moving into the area. Our programmes prepare lawyers for work in a complex and evolving environment; the focus being not only upon current practice but also upon emerging trends.

Within our 3 LLM programmes students can choose either the with dissertation option, i.e. legal research on a topic of your choice, or with professional skills: which is intensive group working on energy project scenarios, teaching practical skills for the workplace.

In addition, the LLM Oil and Gas is now available to study online, enabling students to access an Aberdeen education wherever they are in the world without interrupting current commitments.

The centre benefits from being located within the University of Aberdeen, an institution with a proven track record of carrying out research across the whole spectrum of the energy sector. Our research active Academic staff work closely with organisations and governments in key energy cities around the world so our students are learning from the very best.

In the Complete University Guide 2019 the School of Law is ranked 5th in the UK, out of more than 90 law schools.

The School of Law has an international cohort of students and staff. This creates a positive environment of inclusion and interaction where you will get the chance to make friends for life.

The programmes

- LLM Energy & Environmental Law
- LLM Energy Law
- LLM Oil & Gas Law
- MSc Energy Politics & Law
I enjoy living and studying in Aberdeen because of the extraordinary **cultural diversity** of its population and the permanent feeling of being **welcome**.

Diego Bustamante Gil, Mexico
LLM Oil and Gas Law
The unique aspect of the programme, and the factor which distinguishes this degree from its peers, is the close examination of the nature of energy and the environment, as encapsulated by the concept of sustainable development. The programme looks at the current environmental challenges, including the organisation of our energy system in the 21st century.

Topics of study include: environmental damage in the upstream energy sector; law’s role in enabling a low carbon energy transition; the regulation of the green economy and the protection of our natural resources as a precondition for a sustainable future.

A core theme emphasised throughout this programme is that neither energy demands nor the case for environmental protection can be considered in isolation. Solutions at a local, national and global level must balance carefully these two at times competing concerns, not least in the light of current claims for a transition to a low carbon society.

The speed at which energy law and environmental law are evolving, both domestically and internationally, not only offers you the opportunity to engage with cutting-edge materials but to obtain an advanced qualification in a fascinating, commercially and socially important field.

What you will study

As part of the programme, you must take the following courses:

- Critical Legal Thinking and Scholarship
- LLM Dissertation or relevant Professional Skills Course

In addition, you will study at least three of the courses listed below. A fourth course may be chosen from any other LLM programme.

- International Energy and Environmental Law
- Low Carbon Energy Transition: Renewable Energy Law
- Oil and and Mining Resources for Good
- Low Carbon Energy Transition: Nuclear Energy and Carbon Capture and Storage
- Corporate Environmental Liability
- Principles of Environmental Regulation
- Downstream Energy Law

How you will be taught

Teaching is organised on a modular basis. There are two 12-week semesters, the first in September, the second in January. Students can join the programme in either September or January. Examinations are held in December and May. Professional skills is taught through an intensive two week course after the May exams with following assessments to be submitted during the summer. The dissertation is submitted in August each year. You are strongly advised to consult the Law School webpages for updates to the programme syllabus.

How you will be assessed

Assessment is based on a combination of continuous assessment and written examination at the end of the relevant semester. Continuous assessment takes the form of presentations and written essays.

If taking the dissertation route, you must complete a course in research skills and a dissertation on a topic within the specialism. The dissertation is prepared and written between March and August. For the with Professional Skills route, students are assessed through a group presentation and report and through two long individual reports between May and August.
Among the multiple challenges facing the world today, the provision of sufficient energy at appropriate prices to promote and sustain growth whilst at the same time accommodating climate change concerns, must feature near the top of any list.

Law is a vital aspect of the global energy sector as it has a key role to play in terms of:

- International agreements among states and the commercial energy sector, in relation to both energy security and climate change
- International agreements among the multiple factors within the sector, in relation to the legislation and regulation that touches every aspect of the energy chain

This programme will prepare you for working in this challenging environment. It encompasses a spectrum of courses which provide the opportunity to study the interconnected issues of energy provision, sustainable growth and climate change concerns.

The programme offers the unique opportunity to study the regulation of downstream and upstream energy markets, including the liberalisation of electricity and natural gas markets, access to pipeline infrastructure, licensing of electricity production and of upstream energy activities. It also focuses on the promotion of renewable energy sources.

You can also study investment protection in the energy sector and gain knowledge of the rapidly developing field of international investment arbitration.

What you will study

The following courses are available on the programme and you must complete four courses and a dissertation.

In addition you will choose at least 3 courses from the following listed below. A fourth course can be chosen from any other LLM programme.

- State Control of Hydrocarbons
- Principles of Environmental Regulation
- Oil and Mining Resources for Good
- Low Carbon Energy Transition: Renewable Energy Law
- International Energy and Environmental Law
- Low Carbon Energy Transition: Nuclear Energy and Carbon Capture and Storage
- Corporate Environmental Liability
- Downstream Energy Law

How you will be taught

Teaching is organised on a modular basis. There are two 12 week semesters, the first beginning in September and finishing in December, the second at the end of January and finishing in May. Professional skills is taught through an intensive two week course after the May exams with following assessments to be submitted during the summer. Examinations are held in each semester, in December and May. The dissertation is planned and written between March and August.

How you will be assessed

Assessment is based on a combination of coursework submitted during the semester and a written examination at the end of the relevant semester. If taking the dissertation route, you must complete a course in research methods and a dissertation on a topic within the specialism.

As a full-time student, you will commence work on your dissertation in March, with a final submission date in August each year. Guidance on the writing of a dissertation is given. Students taking the Professional Skills route are assessed through a group presentation and report and through two long individual reports between May and August.

School/department

School of Law

Duration

12 months full-time
27 months online

Intake

September and January

Entry requirements

An upper second class honours degree in Law or another relevant discipline, or equivalent professional experience, for instance in some aspect of energy.

References are not required in order for applicants to submit an application. They are not usually required in order for a decision to be made but in certain cases applicants may be asked to provide a single academic reference at the request of the academic selector.

The English language requirements is an IELTS of 6.5 with 6.0 in writing and reading (or equivalent TOEFL iBT or PTE).

For more information:

www.abdn.ac.uk/study/international/english-requirements.php

Course info www.abdn.ac.uk/ptg/energy-law-d
www.abdn.ac.uk/ptg/energy-law-ps

School info www.abdn.ac.uk/law

General info www.abdn.ac.uk/study

facebook.com/universityofaberdeen
@aberdeenuni
study@abdn.ac.uk
This programme provides you with the skills and knowledge necessary to work in and on the legal aspects of the exciting global industry.

The programme covers both private law aspects of the sector, such as joint ventures and contractual arrangements, and also public law and regulatory aspects, such as environmental protection, health and safety regulation and taxation.

The focus is upon setting practical and real problems in a wider conceptual context with the aim that you should not just know, but understand the relevant areas of oil and gas law. Although there is an emphasis on UK oil and gas law this is very much set in a global oil and gas context.

Home to one of the largest and most impressive teams of oil and gas faculty in any European law schools, our Law School, provides an unrivalled breadth and depth of industry knowledge and experience.

What you will study (on campus)

The following courses are compulsory. As part of the programme you must take the following courses:

- Critical Legal Thinking and Scholarship
- State Control of Hydrocarbons
- Contracting in Hydrocarbon Operations
- Either LLM Dissertation or Professional Skill Oil and Gas: Exploration and Production, the latter course being taken in the summer irrespective of programme start date.

Choose one course from the list below, plus an additional course from any LLM. You can then choose an additional two courses, one of which can be taken from any LLM programme, the other from the list below:

- Corporate Environmental Liability
- Downstream Energy Law
- International Energy and Environment Law
- International Investment Law and Arbitration Law in the Energy Sector
- Oil and Gas Law: Taxation of Upstream
- Oil and Minerals for Good

The Professional Skills option requires on campus attendance in the summer to complete an intensive two-week course.

How you will be taught

There are two 12-week semesters, the first beginning in September, the second in January. Examinations are held in December and May. The dissertation is submitted in August each year. Final assignments on the Professional Skills programme are also submitted in August.

How you will be assessed

Assessment is based on a combination of written examination at the end of the relevant semester and one or more course essays. The dissertation, is planned and written between March and August each year. The Professional Skills Module is assessed through a combination of attendance at, and participation in, classes, preparatory work, two simulated practical exercises and submission of two final assignments.

What you will study (online)

Our online and blended programmes provide the same learning outcomes, delivered through specific online courses.

Three courses must be chosen from the following list. An additional course can be chosen from a different online LLM programme, plus either the Dissertation or Professional Skills course.

Students on the Professional Skills Programme must take State Control of Hydrocarbons and Contracting in Hydrocarbon Operations.

- State Control of Hydrocarbons
- International Energy and Environmental Law
- Contracting in Hydrocarbon Operations
- Corporate Environmental Liability
- Downstream Energy Law
- International Investment Law & Arbitration Law in the Energy Sector
- Oil and Gas Law: Taxation of Upstream
- Oil and Minerals for Good

The Professional Skills option requires on campus attendance in the summer to complete an intensive two-week course.

How you will be taught

There are two 12-week semesters, the first beginning in September, the second in January. Examinations are held in December and May. The dissertation is submitted in August each year. Final assignments on the Professional Skills programme are also submitted in August.

How you will be assessed

Assessment is based on a combination of written examination at the end of the relevant semester and one or more course essays. The dissertation, is planned and written between March and August each year. The Professional Skills Module is assessed through a combination of attendance at, and participation in, classes, preparatory work, two simulated practical exercises and submission of two final assignments.
This programme provides you with the ability to analyse political and legal energy issues and also provide you with knowledge of energy economics. The programme will equip you with an in-depth, all round ability to analyse energy issues and enable you to find employment in an energy-related activity.

Courses offered cover:
- The politics of energy and of electricity market reform
- How economics and legal issues affect political and commercial decisions in energy
- How the law affects the oil and gas industry
- Commercial domestic and international political regulation of energy markets
- The politics and law of renewable energy
- International energy security issues such as oil crises
- The law and politics of climate change

The University of Aberdeen plays a central role in developing new technology across the energy sector while also works closely with industry, government and regulatory bodies in developing energy policy and frameworks.

Our location at the heart of the Energy Capital of Europe means that our students benefit from direct industry involvement with our programmes, including industry advisory panels, guest lectures, field trips, site visits, networking and careers events, and industry supported student projects.

What you will study

Core courses:
- Energy Politics (Semester 1)
- Introduction to Energy Economics (Semester 1)
- International Energy Security (Semester 2)
- Project (Semester 3)

Electives:
- Either - Low Carbon Energy Transition: Renewable Energy Law (Semester 1) or State Control of Hydrocarbons (Semester 1)
- Low Carbon Energy Transition: Nuclear Energy and Carbon Capture and Storage (Semester 2) or Downstream Energy Law (Semester 2)

The Semester 3 project element may be based on work experience or collaboration with an energy industry organisation.

How you will be taught

Teaching is delivered through the Department of Politics and International Relations (PIR), the School of Law and the Business School. The Programme Director, Dr David Toke, leads the teaching from PIR. He is internationally recognised for his research and public policy impact in various aspects of energy, including renewable energy and international energy policy comparisons.

How you will be assessed

Assessment methods vary from course to course and include essays, reports, exercises and presentations. Courses are generally 100% continuous assessment. The MSc in Energy Politics and Law requires you to pass the project and the five module courses.
Introducing Engineering

Our professionally-accredited programmes meet the highest professional standards. We enjoy an excellent reputation as a result of our insistence on the highest standards, our strong commitment to the best teaching practices and curriculums designed by experts in their fields. Our study programmes will give you the best possible start to your professional career.

Aberdeen is known as the Energy Capital of Europe. The city and surrounding area is home to over 900 energy-related companies and is a major international centre of research and innovation in every aspect of energy, including oil and gas, subsea technology, renewables and decommissioning.

The School of Engineering at the University of Aberdeen plays a central role in researching and developing new technology alongside leading international companies and industry regulators. Our location at the heart of the Energy Capital of Europe means that our students benefit from direct industry involvement with our programmes, including industry advisory panels, guest lectures, field trips, site visits, networking and careers events, and industry supported student projects.

We deliver teaching in world-class facilities, including specialist laboratories dedicated to particular subjects such as:

- Satellite communications
- Computer-aided design
- Electrical machines
- Materials testing
- Laser welding
- Hydraulics and fluids
- Concrete
- Large structures
- Geotechnics

Our engineering programmes take a multi-disciplinary approach to learning, and benefit from input from colleagues in other departments across the University including geology, chemistry, computing, and mathematics, as well as on occasion business and law.

Undergraduate Degree Subjects

<table>
<thead>
<tr>
<th>Undergraduate Degree Subjects</th>
<th>Advanced Mechanical Engineering</th>
<th>Advanced Chemical Engineering</th>
<th>Advanced Structural Engineering</th>
<th>Decommissioning</th>
<th>Offshore Engineering</th>
<th>Offshore Structural Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil Engineering</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Electrical/Electronic Engineering</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Petroleum Engineering</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Other Engineering</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Physics</td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Mathematics</td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Chemistry</td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Geology/Geoscience</td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>•</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>•</td>
<td>❌</td>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>•</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>•</td>
<td>❌</td>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>•</td>
<td>❌</td>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>•</td>
<td>❌</td>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>•</td>
<td>❌</td>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>•</td>
<td>❌</td>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>•</td>
<td>❌</td>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>•</td>
<td>❌</td>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>•</td>
<td>❌</td>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>•</td>
<td>❌</td>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>•</td>
<td>❌</td>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>•</td>
<td>❌</td>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>•</td>
<td>❌</td>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>•</td>
<td>❌</td>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>•</td>
<td>❌</td>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>•</td>
<td>❌</td>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>•</td>
<td>❌</td>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>•</td>
<td>❌</td>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>•</td>
<td>❌</td>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>❌</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>
The MSc in Advanced Chemical Engineering is designed specifically for degree holders in chemical engineering, or in other related disciplines, who wish to advance their knowledge and skills and gain a higher qualification in the field of chemical and process engineering.

The programme provides students and practicing engineers with the latest skills and knowledge in a range of core areas of chemical engineering science, including design and practice, alongside opportunities to select from a range of optional courses in clean energy, process safety, management studies, and environmental protection.

What you will study

- Separation and Product Purification
- Air & Water Pollution Control
- Catalyst and Reactor Design
- Process Design Layout & Materials
- Individual Research Project

Optional courses include:

- Computational Fluid Dynamics
- Upstream Oil and Gas Processing
- Process Risk Identification & Management
- Loss of Containment
- Catalyst and Reactor Design
- Process Design Layout & Materials
- Process Plant, Equipment & Operations
- Mathematical Optimisation
- Applied Risk Analysis and Management
- Human Factors Engineering

Careers

Graduates of this programme will find employment opportunities in research and development as well as in industrial fields including oil and gas processing, petrochemicals, fine chemicals and beverages, clean energy, environmental waste management, materials, agrochemicals, process safety, consultancy, and many technical areas.

School/department
School of Engineering

Duration
12 months full-time

Intake
September

Entry requirements

Our minimum entry requirement is a 2:1 (upper second class) UK Honours degree, or an Honours degree from a non-UK institution which is judged by the University to be of equivalent worth in Chemical Engineering or other related engineering discipline.

Those with a High 2:2 Honours degree in Engineering may also be considered if they can demonstrate 2+ years of relevant experience.

All international students, even if you have been educated in the medium of English, must meet our English language requirements (www.abdn.ac.uk/study/international/english-requirements.php)

This programme requires that you meet the “Postgraduate Standard” level of English proficiency.

Course info www.abdn.ac.uk/pgt/adv-chem-eng
School info www.abdn.ac.uk/engineering
General info www.abdn.ac.uk/study

facebook.com/abdnengineering
@aberdeenuni
study@abdn.ac.uk
The MSc Advanced Structural Engineering offers a highly flexible curriculum, which allows you to design your course of study to suit your particular needs and interests, based on your academic background and the career sector you are interested in working in after graduation.

This programme is designed to produce a new generation of professionals, equipped with comprehensive understanding of various aspects of structural engineering and its applications in a wide range of industrial sectors such as civil and construction, aerospace, automotive, renewable energy, and oil and gas.

Students following the civil, aerospace, automotive, oil & gas and wind energy paths, in addition to the core courses, select specialist courses in their particular subject area.

The MSc Advanced Structural Engineering offers is also distinctive because it offers courses such as Advanced Composite Materials, Lightweight Structures and Engineering Optimisation, which are crucial for students interested in pursuing a career in Aerospace, Automotive or Wind Energy sectors, where lightweight structures made of advanced composite materials and highly optimised for their performance play a key role.

What you will study
- Advanced Composite Materials
- Structural Vibration
- Mathematical Optimisation
- Lightweight Structures
- Individual Project in Advanced Structural Engineering

Additional options include:
- Offshore Structural Design
- Fire and Explosion Engineering
- Computational Fluid Dynamics
- Riser Systems and Hydrodynamics
- Engineering Risk and Reliability Analysis
- Finite Element Methods

Assessment
Assessment is based on a combination of exam and continuous assessment. Coursework are designed to maximise the students’ engagement with the current knowledge and the state-of-the-art-of the practice. Most of courses have in-course assessments. In-course assessments have a variety of forms, such as tests, individual reports, presentations and group projects. Feedback on in-course assessments is normally provided before the exams. Formative assessments are also used to enable students to practice problem solving and build confidence in their independent learning.

Careers
Graduates of this programme will be able to apply for a range of roles in numerous civil and construction, aerospace, automotive, renewable energy, and oil and gas companies as well as private and public research and development organisations.

School/department
School of Engineering

Duration
12 months full-time

Intake
September

Entry requirements
Minimum requirements for this programme are a 2:1 (upper second class) Honours degree in Civil, Mechanical, Automotive, Aerospace, Energy or Structural Engineering, or equivalent. Those with a 2:2 Honours degree in a relevant Engineering discipline may also be considered if they can demonstrate 2+ years of relevant industry experience and keen motivation.

All international students, even if you have been educated in the medium of English, must meet our English language requirements (www.abdn.ac.uk/study/international/english-requirements.php). This programme requires that you meet the “Postgraduate Standard” level of English proficiency.

Course info www.abdn.ac.uk/pgt/adv-structural-eng

School info www.abdn.ac.uk/engineering

General info www.abdn.ac.uk/study

facebook.com/abdnengineering
[@aberdeenuni](https://twitter.com/aberdeenuni)
study@abdn.ac.uk
MSc OFFSHORE STRUCTURAL ENGINEERING

This programme was designed and developed with senior engineers working in the offshore industry to transfer the very latest knowledge and skills to the next generation of structural engineers. The programme delivers professional online training for professional engineers working in the offshore oil and gas and renewables sector.

The MSc Offshore Structural Engineering is designed for practising Structural Engineers. While a good honours degree is a pre-requisite, this MSc also requires you to have practical Structural Engineering experience, to provide the context for the taught material.

The entire programme of courses covers a range of relevant theoretical and practical subjects which have been selected to present you with the latest industry thinking and key engineering skills required for this crucial area of expertise. Examples of the former include, Finite Element Methods and Structural Dynamics, whereas examples of the latter include a number of Conceptual Design modules, the design of steelwork connections and structures for offshore renewables.

What you will study
- Structural Dynamics
- Design of Connections
- Conceptual Design of Topside Modules
- Fatigue and Fracture Mechanics
- Blast and Fire Resistant Structures
- Brown Field Structural Engineering
- Structures for Offshore Renewables
- Finite Element Methods
- Conceptual Design of Jackets and Subsea Structures
- Design of Stiffened Plates
- Re-Assessment of Existing Structures by Structural Reliability Analysis
- Design of Jacket Attachments

How you will be taught
The programme is delivered entirely online, on a part time basis, so that you can remain in employment while studying. You will interact with other students on the programme and with lecturers and industry based tutors via module-specific online discussion boards and email. To sustain a good teaching experience and ensure good access to, and feedback from, the industry-based tutors especially, places on the programme are limited.

How you will be assessed
In each semester one module will be assessed by a combination of coursework and a final exam. The other module will be assessed by coursework only.

School/department
School of Engineering

Duration
33 months part-time online

Intake
September

Entry requirements
Minimum requirements for this programme are a 2:1 (upper second class) Honours degree in Civil or Structural Engineering, or equivalent, with ideally 1 or 2 years (depending on its nature) of relevant experience.

Flexibility may be shown to those with 2:2 (lower second class) Civil or Structural Engineering degrees who have significant professional experience. First Class Civil or Structural Engineering students with little experience may be considered after consideration of degree transcripts.

All international students, even if you have been educated in the medium of English, must meet our English language requirements (www.abdn.ac.uk/study/international/english-requirements.php)

This programme requires that you meet the “Postgraduate Standard” level of English proficiency.
MSc OFFSHORE ENGINEERING

Aimed at both practising engineers and recent graduates, this programme is designed to equip students with the skills needed to work in a wide variety of roles in the offshore engineering sector, including oil and gas and renewables.

The MSc Offshore Engineering programme draws upon the School of Engineering’s strengths in both subsea engineering and renewable energy engineering, to investigate modern applications of offshore engineering including marine renewables and subsea oil and gas.

The programme is designed to be accessible to applicants from a wide range of engineering disciplines such as civil, petroleum or mechanical engineering, but also electrical and electronic engineers interested in a career in subsea controls.

A unique strength of the MSc Offshore Engineering programme at Aberdeen is the inclusion of courses on marine renewables and marine environment impact assessments, alongside courses on subsea construction, which gives our graduates greater opportunities across the wider field of marine energy. In particular, this aspect of the programme appeals to engineers working within the subsea oil and gas industry, who are looking to diversify towards offshore renewable energy.

Scotland is leading the way in tidal stream and wave energy projects. The Scottish Government has a target 100% of gross electricity consumption to come from renewables by 2020, of which offshore wind is expected to make the greatest contribution. The established engineering expertise and offshore experience based in the northeast of Scotland means that Aberdeen has emerged as a hub for offshore renewable engineering in recent years.

What you will study

- Offshore Structures & Subsea Systems
- Subsea Construction, Inspection and Maintenance
- Electrical Systems for Renewable Energy
- Engineering Risk and Reliability Analysis
- Hydro, Marine, and Wind Energy
- Marine Environmental Impact Assessment

Additional options include:

- Subsea Control
- Subsea Integrity
- Pipelines and Soil Mechanics
- Renewable Energy Integration to Grid

How you will be taught

The courses are completely modular in structure. A choice of exit levels is provided to suit the needs of the participants. As a fulltime student you will complete 4 modules per semester while as a part-time student you will complete up to 2.

Careers

This programme provides knowledge and skills aimed at the offshore engineering sector, including both oil and gas and renewables.
The MSc Oil and Gas Engineering programme is designed to create future leaders of the industry. The wide range of subjects taught, including engineering, geology and chemistry, ensures that you will have a strong appreciation of all key elements of the industry lifecycle and of the different areas of engineering required, as an understanding of how they work together to deliver projects safely and efficiently.

The interdisciplinary nature of the programme means it is suitable for students from different engineering backgrounds, including mechanical, civil, electrical, or chemical engineering, as well as other relevant engineering backgrounds.

The programme is fully accredited by IMechE and Energy Institute which means you can be assured that your teaching is recognised by relevant bodies and that you are getting the best possible experience.

Aberdeen, which is known as the Energy Capital of Europe. The city and surrounding area is a major international centre of research and innovation in every aspect of the offshore oil and gas industry. Approximately 900 energy-related companies are located in Aberdeen, including world leaders such as Baker Hughes (a GE Company), BP, Chevron, Halliburton, Maersk, Petrofac, Repsol Sinopex Resources. Royal Dutch Shell, Schlumberger, Total and Wood.

The School of Engineering plays a central role in researching and developing new technology to maximise recovery of oil and gas, working alongside leading international. The University’s location at the heart of the oil and gas industry also means that our degree programmes benefit from direct industry involvement, including industry advisory panels, guest lectures, field trips, site visits, networking and careers events, and industry supported student projects.

What you will study

- Reservoir Engineering
- Fundamentals of Petroleum Geoscience
- Project Management
- Fundamental Safety Engineering & Risk Management Concepts
- Flow Assurance
- Facilities Engineering
- Oil and Gas Chemistry
- Well and Production Engineering

In addition, students complete an individual project. The topic of the project is normally specified in collaboration with industrial partners, supervised either in the School of Engineering or externally. Please note that an industry placement is not compulsory and cannot be guaranteed.

If you are registered for the MSc degree, you will start your project in May. Submitted projects are examined by external examiners. Some students will be selected to complete a further oral examination on all aspects of the programme.

Examples of projects undertaken by previous students include:

1. Comparison of analytical and numerical horizontal well productivity calculations for a fluvial/deltaic reservoir
2. Production tubing size and gas lift optimisation for deepwater subsea development
3. The use of polymer flooding to boost oil recovery in the North Sea

How you will be taught

The taught part of the programme consists of two semesters. In addition, a number of industrially-based external lecturers contribute to the programme to give examples of how theoretical concepts are currently being applied in industry.

How you will be assessed

The principal method of student assessment is through written examinations. Examinations for the first semester courses are in December and those for the second semester are in May.

Accreditation

This programme is fully accredited by the Institute of Mechanical Engineers (IMechE) and the Energy Institute (EI).
MSc OIL AND GAS STRUCTURAL ENGINEERING

The future of the industry will be dependent on a new generation of world-leading engineers. This MSc programme has been developed jointly with industry as an effective means of transferring knowledge and skills from senior experts in industry and the University to the new generation of structural engineers.

Available as part-time (by distance learning) only, this MSc programme is normally taken over three years (maximum of 6 years), consisting of two modules at a time in each of the two semesters, in each year.

The programme attracts students from all over the world making the learning experience truly international.

The programme is aimed at you, as a practising structural engineer. Therefore, whilst a good honours degree is a prerequisite, this MSc also requires you to have practical structural engineering experience to provide the context for the taught material.

You will have the opportunity to interact with your fellow learners and with the tutor via module-specific online discussion boards and email.

What you will study

- Design of Connections
- Fatigue and Fracture Mechanics
- Structural Dynamics
- Conceptual Design of Top-Side Modules
- Blast and Fire Resistant Structures
- Brownfield Structural Engineering
- Petrochemical Structural Engineering
- Finite Element Methods
- Conceptual Design of Jackets and Subsea Structures
- Design of Stiffened Plates
- Re-Assessment of Existing Structures by Structural Reliability Analysis
- Design of Jacket Attachments

Half of the modules are delivered by structural engineers who are well respected for their experience and expertise in the oil and gas industry.

The remaining modules are delivered by world-class, research active, teaching staff at the University of Aberdeen.

This mix of Industry and academia has produced a high value, demanding programme delivering in-depth fundamental understanding and practical application.

The modules have been selected to provide maximum relevance to current and future Industry requirements. The modules listed are subject to continued monitoring and re-appraisal by an Advisory Board of Industry Representatives.

How you will be taught

To enable you to remain in your employment, the MSc is only available as a part-time programme and is taught entirely via the University’s online virtual learning environment. The online delivery is a staged release of teaching materials and coursework assignments with online tests after each teaching block. Teaching blocks are normally three weeks apart. Half of the modules will also have an end of module Examination – in January or May/June – which can either be at Aberdeen or at an agreed Higher Education establishment/British Council office convenient for the student’s own location anywhere in the world.

Please note: this programme is only offered as a part-time, online option.

How you will be assessed

Assessment is by a mix of examination and coursework for most modules with half of the modules being by coursework alone.

Accreditation

Fully accredited by the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Institute of Highway Engineers (IHE) and the Chartered Institution of Highways & Transportation (CIHT).

Professional Masters Online Only

School/department
School of Engineering

Duration
33 months – Sept to June part-time (MSc) 21 months – Each of these three periods is 1, 2 or 3 times 12 less the three months of the final summer. 9 months part-time (PgCert)

The above indicates the minimum amount of time required to complete the programme. Students study up to two modules in each of the University’s semesters which start in September and January. Some students elect to study fewer modules, thereby extending the time taken to complete the programme.

Intake
September

Entry requirements

A 2.1 Honours degree in Civil or Structural Engineering, or equivalent. Applicants with other relevant qualifications will be considered if they also have significant relevant Structural Engineering professional experience. Ideally all applicants must have at least 2 years (depending on its nature) of relevant experience.

All international students, even if you have been educated in the medium of English, must meet our English Language requirements (www.abdn.ac.uk/study/international/english-requirements.php).

This programme requires that you meet the ‘Postgraduate Standard’ level of English proficiency.

Course info www.abdn.ac.uk/ogse
School info www.abdn.ac.uk/engineering
General info www.abdn.ac.uk/study

facebook.com/abdnengineering
@abderdeenuni
study@abdn.ac.uk
The MSc Petroleum Engineering programme is designed with industry support, and includes the study of petroleum geology, to produce world-class petroleum engineers, who are fully prepared to take up roles in the upstream oil and gas industry.

This programme delivers the necessary knowledge and skills required for an integrated study and evaluation of a prospect, leading to a viable oil and gas field development plan. Drawing upon a long established track record of excellence in teaching and research, the MSc Petroleum Engineering is delivered jointly by the School of Engineering and the Department of Geology and Petroleum Geology along with industry-based tutors covering a broad range of courses including the fundamentals of petroleum geoscience, enhanced oil recovery, reservoir simulation and well and production engineering. There is also a particular focus on formation evaluation and reservoir engineering and simulation.

The MSc Petroleum Engineering develops your skills so you are able to appraise and select the appropriate technologies for safe production recovery of hydrocarbon oil and gas and includes hands-on experience of using industry standard simulation software in all aspects of petroleum engineering. Aberdeen is known as the Energy Capital of Europe. The city and surrounding area is a major international centre of research and innovation in every aspect of the offshore oil and gas industry. Approximately 900 energy-related companies are located in Aberdeen.

The School of Engineering plays a central role in researching and developing new technology, working alongside leading international companies and our location at the heart of the energy industry also means that our degree programmes benefit from direct industry involvement, including industry advisory panels, guest lectures, field trips, site visits, networking and careers events, and industry supported student projects.

What you will study
- Fundamentals of Petroleum Geoscience
- Petrophysics, Core Analysis and Formation Evaluation
- Reservoir Engineering
- Enhanced Oil Recovery
- Reservoir Simulation
- Well and Production Engineering
- Well Testing: Analysis and Design
- Field Development and Petroleum Economics

Project/Dissertation
As a full-time student, taking the MSc Programme over 12 months, a dissertation is to be prepared on work undertaken during the final individual project, which will normally be specified in collaboration with industrial partners, supervised either in the School of Engineering or externally and carried out from May to September.

How you will be taught
The taught part of the programme is delivered over two semesters: September to late December, and January to May. The courses are taught by staff from the School of Engineering and School of Geosciences. In addition, a number of industrial-based external lecturers contribute to the programme to give examples of how theoretical concepts are currently being applied in industry.

After the written examinations in May, students registered for the MSc degree will commence an industry-based project where this can be arranged or school-based project, and at the end of this period, an individual project report, in the form of a dissertation, has to be handed in and examined. Oral examination of some students on all aspects of the programme may be required by the External Examiner. The final assessment takes account of performance in all parts of the programme and examinations.

How you will be assessed
The principal method of assessment is through end of course written examinations and continuous assessment. Examinations for the first semester courses are in December and those for the second semester are in May. Candidates are normally expected to pass all examinations and all project submissions. As an MSc student, you must submit a dissertation on your project, and may be required to undergo an oral examination.

Entry requirements
Our minimum entry requirement is a UK Honours degree (or equivalent) in any branch of engineering at 2:1 (upper second class) or above. Students with a 2:1 degree in Geology, Physics, Chemistry or Mathematics may also be considered if they can demonstrate 2+ years of relevant work experience.

Engineering or Applied Maths graduates with a 2:2 may also be considered if they can also demonstrate 2+ years of relevant experience.

All international students, even if you have been educated in the medium of English, must meet our English Language requirements (www.abdn.ac.uk/study/international/english-requirements.php). This programme requires that you meet the "Postgraduate Standard" level of English proficiency.
MSc PROCESS SAFETY

This programme examines the primary technologies and operations involved in upstream oil and gas processing, with a particular focus on operational safety, risk assessment and risk management.

The School of Engineering at the University of Aberdeen has focused on safety-related teaching and research for over 25 years and is today established as one of the key centres for safety engineering teaching and research in the UK.

The MSc Process Safety is developed with the Institution of Chemical Engineers (IChemE) and industry to produce qualified Process Safety Engineers.

On this programme, you will be exposed to the major issues and challenges facing industry today, including operational safety, risk assessment and management and develop a professional approach to managing these accordingly.

This programme is distinctive because it is designed for students with a chemical engineering background, or those with a background in Petroleum or Mechanical Engineering, with good chemical/chemistry knowledge.

A major component of the MSc Process Safety programme is understanding and managing risk. You will be introduced to the tools and processes used to identify, assess and manage risk, taking such issues as process operations and human factors into account.

Aberdeen is known as the Energy Capital of Europe. The city and surrounding area is home to over 900 energy-related companies and is a major international centre of research and innovation in every aspect of the offshore oil and gas industry.

The University’s location at the heart of the oil and gas industry means that our degree programmes benefit from direct industry involvement, including industry advisory panels, guest lectures, field trips, site visits, networking and careers events, and industry supported student projects.

What you will study
- Process Risk Identification and Management
- Upstream Oil & Gas Processing
- Loss of Containment
- Computational Fluid Dynamics
- Applied Risk Analysis & Management
- Process Plant, Equipment and Operations
- Process Design, Layout & Materials
- Human Factors Engineering
- Individual Project in Process Safety

How you will be taught

The programme consists of two semesters: September to December, and January to May. After the written examinations in May, students registered for the MSc degree start an industry or school-based project, where this can be arranged, and at the end of this period an individual project report, in the form of a dissertation, has to be submitted and examined by our External Examiners, who will also make an oral examination of some students on all aspects of the programme. The final assessment takes account of performance in all parts of the programme and examinations.

How you will be assessed

The principal method of student assessment is through written examinations candidates are normally expected to pass all examinations and all projects submissions. MSc candidates must submit a dissertation on their project, and may be required to undergo an oral examination.
Empowering managers to deliver the financial and operational success of projects across all industries, through a solid grounding in the principles and practice of project management.

The online MSc Project Management is an APM-accredited programme which has been designed specifically to meet the requirements of practising professionals. Ideally suited to project management professionals from any industry sector who are looking to up-skill, or managers looking to move into project management roles, this programme provides advanced education and training in areas including project planning, budgets and controls, quality and risk management, and commercial and contractual issues.

Flexibility and a firm grounding in current practice are the principal features of the MSc Project Management. The courses on the programme are completely modular in structure and have been carefully developed to provide a variety of levels of provision, suit your individual needs. This includes a choice of exit levels, which means you can study part-time towards a Postgraduate Certificate, Diploma or full MSc qualification while continuing in employment.

What you will study
Two modules are taught in each of the semesters, which start in September and January.

Certificate (year 1)
- Project Management Essentials 1
- Organisations and People
- Project Planning and Control
- Budgets and Financial Control

Diploma (year 2)
- Project Management Essentials 2
- Commercial and Contractual Issues
- Quality and Risk Management
- Group Project

MSc (year 3)
- Managing Project Teams
- Programme & Portfolio Management
- Individual Project (Dissertation)

How you will be assessed
The modules are assessed by a combination of coursework and written examination. The distance learning coursework is submitted to the course tutor electronically. If you are a distance learning student, you will need to arrange a suitable examination venue at a convenient Higher Education Institution or British Council Office. Each module can be taken as a stand-alone credit bearing unit for the purposes of Continuing Professional Development. A choice of exit levels is also provided to suit your needs.

On campus learning
Students wishing to study towards their qualification on campus can do so by attending classes approximately once a month. Classes are run on a Saturday and Sunday. Study visas are not granted for part-time study.

Accreditation
The programme is accredited by the Association for Project Management (APM).

School/department
School of Engineering

Duration
27 months online

Intake
September and January

Entry requirements
Relevant experience in Project Management is a prerequisite. In general, applicants are expected to hold a degree in an appropriate subject; however alternative qualifications, combined with an appropriate level of significant and relevant experience, may also be considered as a means for entry.

Applicants with no formal higher educational qualifications should not be deterred from applying for this course.

All international students, even if you have been educated in the medium of English, must meet our English Language requirements (www.abdn.ac.uk/study/international/english-requirements.php).

This programme requires that you meet the ‘Postgraduate Standard’ level of English proficiency.
MSc RENEWABLE ENERGY ENGINEERING

The demand for renewable energy engineers is expected to continue to grow as governments and companies look to diversify from hydrocarbons and reduce emissions. This programme teaches the advanced skills needed to design, build and optimise renewable energy infrastructure of the future.

What you will study

- Electrical Systems for Renewable Energy
- Renewable Energy 1 (Solar and Geothermal)
- Renewable Energy 2 (Biomass)
- Fundamental Concepts in Safety Engineering
- Renewable Energy 3 (Wind, Marine and Hydro)
- Energy Conversion and Storage
- Renewable Energy Integration to Grid
- Legislation, Planning and Economics

Dissertation/Project

For full-time students taking the MSc Programme over 12 months, a dissertation is to be prepared on work undertaken during the final individual project, which will normally be specified in collaboration with industrial partners, supervised either in the School of Engineering or externally.

How you will be taught

The taught part of the programme consists of two semesters: the first running from September to December, and the second from January to May.

The courses are assessed both by written examination and coursework.

After the second semester written examinations in May, students registered for the MSc degree start an industry or school-based project, where this can be arranged, and at the end of this period, an individual project report, in the form of a dissertation, has to be handed in.

How you will be assessed

The principal method of assessment is through written examinations. Examinations for the first semester courses are in December and those for the second semester are in May. You will be expected to pass all examinations and all project submissions. MSc candidates must submit a dissertation on their project, and may be required to undergo an oral examination.
I chose the University of Aberdeen because of its **reputation** for energy studies. In the whole of the UK, it was the **best** in terms of course content.

Adesola Opeyemi Adetoye, Nigeria
MSc Renewable Energy Engineering
MSc SAFETY AND RELIABILITY ENGINEERING

The ongoing developments in safety and reliability remains a primary focus for the industry. Greater effort is now being put into assessing the safety and reliability of complex engineering systems, and of ensuring that existing facilities can continue to be operated safely and economically.

The School of Engineering at the University of Aberdeen is a world-class centre for research and teaching in safety and reliability engineering. One of the objectives of the School is to continually develop and deliver world-class teaching and research in safety and reliability engineering aimed at educating the safety engineers of the future.

The MSc Safety and Reliability Engineering for Oil and Gas and the MSc Safety and Reliability Engineering provide advanced education and training for graduate engineers in the area of safety engineering, reliability engineering, and loss prevention.

There is a continuing demand for individuals with specialist knowledge in these areas across many industry sectors including oil and gas, chemicals, transport and construction, partly a result of the legal requirements to assess and control industrial risks to people and the environment and partly because of the need to create high integrity engineering systems in many industries.

Safety engineering is not a subject which is adequately covered in most undergraduate degrees, so this MSc programme brings together those topics relating to the safety and reliability of engineering products and systems, including the legislative framework, in a unified approach.

MSc Safety and Reliability Engineering for Oil and Gas

The MSc Safety and Reliability Engineering for Oil and Gas provides the same level of quality and expertise as the MSc Safety and Reliability Engineering for Oil and Gas, but with broader applications for other industries such as nuclear, defence, transport, aerospace, manufacturing and process industries.

MSc Safety and Reliability Engineering

The MSc Safety and Reliability Engineering provides the same level of quality and expertise as the MSc Safety and Reliability Engineering for Oil and Gas, but with broader applications for other industries such as nuclear, defence, transport, aerospace, manufacturing and process industries.

What you will study

- Fundamental Safety Engineering & Risk Management Concepts
- Statistics & Probability for Safety, Reliability & Quality
- Fire & Explosion Engineering
- Offshore Structures & Subsea Systems
- Advanced Methods for Risk & Reliability Assessment
- Applied Risk Analysis & Management
- Process Design, Layout and Materials
- Human Factors Engineering
- Individual Project

As a full-time student taking the MSc programme over 12 months, a dissertation is to be prepared on work undertaken during the final individual project, which will normally be specified in collaboration with industrial partners, supervised either in the School of Engineering or externally.

Please note that an industry placement is not compulsory and cannot be guaranteed. If you are a part-time student who is sponsored by your company or working for a company approved by the University, a dissertation is to be prepared on approved project work carried out within that company during the second or third year of the programme.

How you will be assessed

Assessment is by continuous assessment and/or written assignment.

“I had six-years of professional experience before coming to the programme, yet the programme really strengthened the knowledge that I previously lacked.”

Fari Aditya Gatam, Indonesia, MSc Safety and Reliability Engineering for Oil and Gas
Over the next decade, around 100 platforms and 7,500 kilometres of pipeline on the UK Continental Shelf are forecast for decommissioning, with costs estimated to be £59 billion to 2050. The industry aims to reduce this figure by 35%, a target set by the Oil & Gas Authority.

The aim of this programme is to provide students with a broad range of knowledge and expertise in the physical process of taking offshore platforms out of service, including engineering, project management, business, law, health and safety, and environmental studies.

The MSc Decommissioning was designed in collaboration with major operators, supply chain companies and regulatory bodies and features guest lectures from leading decommissioning industry experts. In addition, many students have the opportunity to undertake industry-based projects as part of the programme.

The degree is taught through a number of core and optional courses and students will have the chance to develop and further research a specific area of interest to them through their MSc final project dissertation with real-world application to their business.

The degree opens up career opportunities in specific areas, such as law, engineering, project management, business consultancy, economics and financial management and is aimed both at recent graduates from a broad range of degree backgrounds as well as those already working within the oil and gas sector or its related industries.

Students will learn from world-class academics, many of whom have worked in or alongside industry.

While the UK Continental Shelf (UKCS) is currently the largest decommissioning market in the North Sea, there are significant opportunities in key regions around the globe where skills and knowledge of the decommissioning process are a huge advantage for future careers.

What you will study
- Offshore Structures and Subsea Systems
- Well Plugging and Abandonment
- Decommissioning of Offshore Installations: Regulatory Aspects
- Petroleum Economics and Project Evaluation
- Marine Environmental Impact Assessment
- Process Shut Down, Structural Decommissioning
- Group Project in Comparative Assessment

In addition, students will be able to specialise by choosing one of the following areas:
- Decommissioning of Offshore Installations: Commercial Aspects
- Engineering Risk and Reliability Analysis
- Applied Marine Ecology and Ecosystem Management

How you will be taught
The taught part of the programme consists of two semesters: the first running from September to December, and the second from January to May.

The courses are assessed both by written examination and coursework.

After the second semester written examinations in May, students registered for the MSc degree start an industry or school based project, where this can be arranged, and at the end of this period, an individual project report, in the form of a dissertation, has to be handed in and examined by External Examiners, who will may also make an oral examination of some students on all aspects of the programme.

National Decommissioning Centre
The University of Aberdeen is the recognised leader in offshore oil and gas decommissioning and is home to the newly established National Decommissioning Centre. With support from the UK Government, through the Oil & Gas Technology Centre, it brings together researchers, industry and regulatory bodies to work together to develop and deploy decommissioning technology.

School/department
School of Engineering

Duration
12 months full-time
27 months online

Intake
September

Entry requirements
Our minimum entry requirement for this programme is a UK Honours degree (or an honours degree from a non-UK institution which is judged by the University to be of equivalent worth) in any branch of Engineering, Geosciences, Law, Economics, Business or other science, technology or commercial subjects at a 2.1 (upper second) class or above. Students with at least an HND combined with significant relevant experience may also be considered.

All international students, even if you have been educated in the medium of English, must meet our English Language requirements (www.abdn.ac.uk/study/international/english-requirements.php).

This programme requires that you meet the ‘Postgraduate Standard’ level of English proficiency.

Course info www.abdn.ac.uk/pgt/decommissioning
School info www.abdn.ac.uk/engineering
General info www.abdn.ac.uk/study

facebook.com/abdnengineering
@aberdeenuni
study@abdn.ac.uk
MSc ADVANCED MECHANICAL ENGINEERING

This programme emphasises the application of computational techniques and packages to solve complex engineering problems. It offers students a broad range of advanced subjects across the mechanical engineering disciplines to prepare students to excel in various industrial sectors.

What you will study

- Computational Fluid Dynamics
- Numerical Simulation of Waves
- Finite Element Methods
- Mathematical Optimisation
- Engineering Risk and Reliability Analysis

In addition, students will be able to specialise by choosing optional courses from the following areas:
- Fire and Explosion Engineering
- Structural Vibrations
- Project Management
- Risers Systems and Hydrodynamics
- Hydro, Marine and Wind Energy

How you will be taught

The taught part of the programme consists of two semesters: the first running from September to December, and the second from January to May.

The courses are assessed both by written examination and coursework.

After the second semester written examinations in May, students registered for the MSc degree start an industry or School based project, where this can be arranged, and at the end of this period, write an individual project report, in the form of a dissertation.

How you will be assessed

The principal method of assessment is through written examinations. Examinations for the first semester courses are in December and those for the second semester are in May. You will be expected to pass all examinations and all project submissions. MSc candidates must submit a dissertation on their project, and may be required to undergo an oral examination.

School/department

School of Engineering

Duration

12 months full-time

Intake

September

Entry requirements

Our minimum entry requirement for this programme is a UK Honours degree (or an honours degree from a non-UK institution which is judged by the University to be of equivalent worth) in Mechanical, Material, Civil, Chemical or Aerospace Engineering at a 2:1 (upper second) class or above. Students with a 2:2 and 2-3 years of relevant experience may also be considered.

All international students, even if you have been educated in the medium of English, must meet our English Language requirements (www.abdn.ac.uk/study/international/english-requirements.php).

This programme requires that you meet the ‘Postgraduate Standard’ level of English proficiency.

Course info www.abdn.ac.uk/pgt/advanced-mech-eng
School info www.abdn.ac.uk/AbdnEngineering
General info www.abdn.ac.uk/study

facebook.com/abdnengineering
@aberdeenuni
study@abdn.ac.uk
With 40% of all the world's subsea installations located in the North Sea, Aberdeen is Europe's leading centre for subsea development and operation. A cluster of world-leading subsea technology companies has developed around Aberdeen over the last four decades, including TechnipFMC, Aker Solutions, GE Oil & Gas, Subsea 7 and Bibby Offshore, supported by an extensive network of supply chain companies.

The University's location at the heart of the oil and gas industry also means that our degree programmes benefit from direct industry involvement, including industry advisory panels, guest lectures, field trips, site visits, networking and careers events, and industry supported student projects.

The MSc Subsea Engineering programme focuses on the fundamental skills and technical knowledge needed to prepare graduate engineers for technical leadership roles within the subsea industry, including:

- Increased technical knowledge and understanding of the development and operation of subsea technologies and systems, from wellhead to topside structure interconnections.
- Intellectual and practical skills so that you can apply sound engineering principles and analysis methods to the design and installation of subsea systems, and can use and adapt appropriate analysis tools and techniques, specialist design software and standards for design improvements and performance optimisation.
- The opportunity to further enhance your transferable and personal skills in self-study, communication, report writing, project and time management, and problem solving.
- An awareness of the roles and challenges of a practising subsea engineer for technical leadership and managerial responsibility.

What you will study

- Subsea Integrity
- Offshore Structures & Subsea Systems
- Engineering Risk & Reliability Analysis
- Subsea Controls
- Subsea Construction, Inspection & Maintenance
- Pipelines & Soil Mechanics
- Riser Systems & Hydrodynamics
- Flow Assurance

Individual Project – previous student projects include:

1. Leakage detection in subsea flowlines.
2. Investigation of multiphase boosting technology in the North Sea oil and gas fields.
3. The investigation of a combined Riser Mooring concept for offshore Australia FPSO developments.

How you will be taught

The courses are completely modular in structure. A choice of exit levels is provided to suit the needs of the participants. As a full-time student you will complete 4 modules per semester while as a part-time student you will complete up to 2.

How you will be assessed

The modules are assessed by a combination of coursework and written examination. The distance learning coursework is submitted to the course tutor online and marks and comments will be returned.

Accreditation

Fully accredited by the Institute of Marine Engineering, Science & Technology (IMarEST) and Institution of Mechanical Engineers (I MechE), the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (I Struct E), the Institute of Highway Engineers (IHE) and the Chartered Institution of Highways & Transportation (CIHT).

School/department

School of Engineering

Duration

12 months full-time
27 months online

Intake

September

Entry requirements

Our minimum entry requirement is a UK Honours degree (or equivalent) in any branch of Engineering at a 2:1 (upper second) class or above. Applicants with slightly lower qualifications (e.g. a UK equivalent lower second class honours degree) may be considered if they can demonstrate they have 5, or more, years of professional experience judged by the University to be of direct relevance to the programme.

All international students, even if you have been educated in the medium of English, must meet our English Language requirements (www.abdn.ac.uk/study/international/english-requirements.php).

This programme requires that you meet the ‘Postgraduate Standard’ level of English proficiency.

Please note: for Distance Learning students, access to a high speed Internet connection is necessary.
MSc GLOBAL SUBSEA ENGINEERING

The MSc Global Subsea Engineering programme offers a unique opportunity for students to engage and learn in an internationally collaborative environment centred around two major energy hubs: Aberdeen, Scotland and Perth, Western Australia.

This 12 month masters programme draws on the niche expertise of the University of Aberdeen and Curtin University in the field of subsea engineering and offers a seamless global education experience where students spend time at each institution.

The programme provides an in-depth understanding of subsea infrastructure, construction and maintenance, subsea surveying and installation, safety and regulation. It has been designed to produce the career-ready engineers that the highly technical subsea industry requires. Upon completion students will be awarded a degree recognising their study at both institutions.

This exciting new partnership between the University of Aberdeen and Curtin University enables students to develop and apply the technical expertise required for working in the oil and gas industry in an international context.

Students will then spend their second semester at Curtin University, studying:
- Phase Behaviour and Flow Assurance
- Umbilicals and Risers
- Safety, Reliability and Integrity Management
- Flowlines and Pipelines

Finally, students will return to Aberdeen and complete an individual project.

It is also possible to study this programme undertaking the first semester and project in Australia with the second semester being held in Aberdeen. Please note that students must be eligible for the relevant student visas in both countries and are responsible for ensuring these arrangements are made in a timely manner.

How you will be taught

The courses are assessed both by written examination and coursework.

After the second semester written examinations, students registered for the MSc degree start an industry or school based project, where this can be arranged, and at the end of this period, an individual project report, in the form of a dissertation, has to be handed in.

How you will be assessed

The principal method of assessment is through written examinations. Examinations for the first semester courses are in December and those for the second semester are in May. You will be expected to pass all examinations and all project submissions. MSc candidates must submit a dissertation on their project, and may be required to undergo an oral examination.

What you will study

The first semester will be taught at the University of Aberdeen and covers the following:
- Subsea Construction, Inspection and Maintenance
- Subsea Control
- Subsea Integrity
- Offshore Structures and Subsea Systems

Students will then spend their second semester at Curtin University, studying:
- Phase Behaviour and Flow Assurance
- Umbilicals and Risers
- Safety, Reliability and Integrity Management
- Flowlines and Pipelines

Finally, students will return to Aberdeen and complete an individual project.

It is also possible to study this programme undertaking the first semester and project in Australia with the second semester being held in Aberdeen. Please note that students must be eligible for the relevant student visas in both countries and are responsible for ensuring these arrangements are made in a timely manner.

How you will be taught

The courses are assessed both by written examination and coursework.

After the second semester written examinations, students registered for the MSc degree start an industry or school based project, where this can be arranged, and at the end of this period, an individual project report, in the form of a dissertation, has to be handed in.

How you will be assessed

The principal method of assessment is through written examinations. Examinations for the first semester courses are in December and those for the second semester are in May. You will be expected to pass all examinations and all project submissions. MSc candidates must submit a dissertation on their project, and may be required to undergo an oral examination.

What you will study

The first semester will be taught at the University of Aberdeen and covers the following:
- Subsea Construction, Inspection and Maintenance
- Subsea Control
- Subsea Integrity
- Offshore Structures and Subsea Systems
The University’s *excellent reputation* in engineering teaching and its close links with *industry* was too good an opportunity to miss.
Geology degrees have been awarded at the University of Aberdeen for more than 150 years. Our unique position in Europe’s Energy Capital means we have long-established links with the oil, gas and renewable industries, which will benefit graduates as they progress through their career.

We have created a world-class learning environment and we pride ourselves on being a close community of staff and students, working together and sharing experiences.

Organisations that we work with across a number of areas include – Apache, Statoil, Baker Hughes, BP, Chevron, Conoco Phillips, Dana Petroleum, Halliburton, BP, Shell, Pemex and Saudi Aramco, to name a few. These links, and more help us deliver world-class teaching and research tailored to industry needs.

We deliver our programmes from world-class facilities with a number of our MSc programmes having dedicated study and teaching space available.

Our flagship MSc Integrated Petroleum Geoscience programme was first launched in 1973, due to a recognised demand from industry.

Over the past 40 years the programme has been developed in line with industry needs and informed by industry experts.

The programme today is one of the most highly regarded Petroleum Geology Masters programmes in the world, with over 97% of graduates entering straight into careers in the industry or further research.

Local, national and international field trips play a major part in all our postgraduate teaching. Some are organised directly through the department as part of the degree programme, whereas others are organised through the active student chapters, which offer great networking opportunities and form an essential bridge into careers.

Recent additions to our portfolio of MSc degree programmes now means we offer one of the most industry relevant, comprehensive and careers focussed Geoscience portfolios in the UK.

The Degree Programmes

- MSc Environmental Partnership Management
- MSc Geographical Information Systems
- MSc Geophysics
- MSc Integrated Petroleum Geoscience
- MSc Oil and Gas Enterprise Management
- MSc Petroleum Data Management
- MSc Reservoir Engineering

Full details of entry requirements are on the individual programme information pages that follow, but the below table looks to give you a simple summary of where the different undergraduate degree subjects fit in.
I believe that as a result of this *knowledge* and the *analytic skills* that I have acquired, more doors of *opportunities* will be open for me.
MSc ENVIRONMENTAL PARTNERSHIP MANAGEMENT

Future success in sustainable development will increasingly rely upon private sector, non-profit and governmental bodies working in partnership. This programme is designed to develop the future generation of eco-entrepreneurs who have the passion and skills to lead environmental partnerships and projects of the future, responding to the UN Sustainable Development Goals.

What you will study

Students will study four courses in the first semester and four courses in the second. These eight courses will be made up of six core and two electives. The partnership project completed in semester three completes the MSc.

- Collaboration & Partnership 1: Principles
- Contemporary Environmental Challenges
- Planning, Land and Environmental Law
- Collaboration & Partnership 2: Practice
- Governance and Political Economy of Sustainability
- The Leadership Challenge
- Partnership project – this involves collaboration (potentially in the form of a placement) with a supporting partner organisation/agency (eg with SEPA, SNH, the National Park Authority, NGO, industry partner or a Community group.
- Operations and Project Management

How you will be taught

The MSc is taught by experts in environmental policy, energy, water resources, coastal management, tourism, agriculture, transport and rural communities from the Geography and Environment department, with staff from the Business School offering elements of management training that make up part of the MBA. An exciting component of the course is the opportunity to learn about principles and practise of partnership and collaboration from a range of expert speakers from businesses, governments and NGOs.

How you will be assessed

Courses are assessed by continuous assessment, written examination or a combination of these.
MSc GEOGRAPHICAL INFORMATION SYSTEMS

Building on 30 years of excellence in the postgraduate teaching of remote sensing (drones and UAVs), photogrammetry, GIS, visualisation, digital mapping and cartography, this programme promotes the integrated study and application of the geospatial technologies through theory and practice. These are all crucial skills for the global energy industry today.

This programme draws upon a wide range of international, national, and local expertise in the following areas:

- Coastal and marine sciences
- Landscape ecology and landscape change
- Archaeology
- Integrated coastal management
- Offshore hydrographic and underwater survey
- Renewable energy
- Geology and hydrocarbon exploration
- Environmental risks and hazards
- Marine and terrestrial spatial planning
- Precision agriculture
- Climate change
- Field data collection.

You will use state of the art tools and techniques such as underwater remote sensing, image data acquisition using UAVs, mobile GIS mapping and spatial apps.

Geospatial technologies are of increasing importance in many areas of commercial, industrial, and government employment; for example in:

- Nature conservation agencies
- Hydrocarbon exploration and Management
- Offshore and hydrographic survey
- Oilfield exploration and management
- Environmental consultancy
- Civil and coastal engineering projects
- Environmental modelling
- Precision agriculture
- Coastal zone management and Marine Spatial Planning
- Decommissioning

What you will study

The GIS programme covers the fundamental techniques and tools for acquiring, storing, processing, classifying, visualising and analysing spatially referenced data, and their application to the study of the environment. Topics include:

- History, Origins, Evolution and Implementation of GIS
- Introduction to GIS Tools, Techniques, Cartography and Geovisualisation
- WebGIS and Internet Mapping
- Database Systems and Big Data
- Advanced Spatial Analysis and Programming
- Fundamentals and Advanced Applications of Map Algebra
- UAV Remote Sensing, Monitoring and Mapping
- Current Applications of GIS

How you will be taught

Teaching is through a combination of illustrated lectures, practical demonstrations, student-led seminar discussions, learning, and fieldwork, making use of Internet resources, group practical work and lectures/seminars with experts in a range of application fields.

How you will be assessed

Assessment is done through a combination of written assignments and lab reports as prescribed for each course, plus a dissertation/report/paper. Students present their work in an annual Presentations Workshop.

School/department
Geography & Environment

Duration
12 months full-time
27 months online

Intake
September and January

Entry requirements
The normal minimum entry requirement is a 2:2 Honours Degree or equivalent qualification, in Agriculture, Computing Science, Ecology, Engineering, Environmental Science, Forestry, Geography, Geology, Geomatics, Marine and Coastal Science, Physics, Spatial Planning, Plant Science, Zoology or a cognate subject. Candidates with degrees in other subject areas will be considered if they can demonstrate interest, aptitude and experience in a field relevant to the application of geospatial technology.

All international students, even if you have been educated in the medium of English, must meet our English Language requirements (www.abdn.ac.uk/study/international/english-requirements.php).

This programme requires that you meet the 'Postgraduate Standard' level of English proficiency.

Course info www.abdn.ac.uk/gis
School info www.abdn.ac.uk/geosciences
General info www.abdn.ac.uk/study

facebook.com/universityofaberdeen
@aberdeenuni
study@abdn.ac.uk
MSc GEOPHYSICS

Developed on the back of a recognised need for qualified Geophysicists within industry, this programme will equip students with the skills needed for careers in the hydrocarbon, minerals exploration or associated service industries, as well as undertaking broader geophysics research.

A unique geophysics course with top class facilities, approachable and knowledgeable staff on the doorstep of the UK oil & gas hub. Learn essential geophysical skills through doing: fieldwork, practical classes, self-study and lectures. Benefit from individual mentorship from industry and academic researchers and gain confidence in using geophysical software and equipment.

Explore the theory of geophysics and its application to a multitude of research and industry problems across a variety of scales, via a curriculum that covers the broad fundamentals and new technologies.

Expand your geophysical knowledge and skills to gain an essential qualification for employment or research. Geophysics is thriving in the UK, with a vibrant research community alongside an influential and dynamic industry.

Why study Geophysics

- Follow our recent graduates into exciting careers; over half are working in a geophysics industry or lecturing, a quarter are undertaking geophysics PhD research and the remainder are employed in the digital technology sector.
- Learn from experienced geophysics staff and key industry experts, delivered in world-class facilities with dedicated teaching and study space.
- Gain hands-on experience in using industry-standard software suites.
- Acquire geophysical data with our large pool of geophysics equipment (including passive seismometers, seismic reflection/refraction, ground penetrating radar, resistivity, magnetometers and dGPS).
- Develop your own ideas, strategies and solutions during the self-directed geophysics project with dedicated academic and industry mentorship.
- Experience local, national and international fieldwork as part of the MSc programme and through active student chapters.
- Enhance your interpersonal, business, presentation and communication skills. Work both as a team and individually, and immerse yourself in new experiences and influences.

What you will study

- Earth Physics, Structure and Processes
- Seismic Reflection Processing, Imaging and Quantitative Interpretation
- Time Series Analysis and Signal Processing
- Field Geophysical Data Acquisition
- Seismology and Earth Imaging
- Borehole Geophysics and 4D Reservoir Monitoring
- Geophysical Inverse Theory and Statistics
- Topics in Advanced Applied Geophysics
- Project in Geophysics
- Individual Project in geophysics, supported directly by industry where appropriate

How you will be taught

The taught part of the programme is delivered over two semesters: September to December, and January to May. The courses are taught by staff from School of Geosciences. In addition, a number of industry based external lecturers contribute to the programme to give examples of how theoretical concepts are currently being applied in industry.

How you will be assessed

Continuous assessment will play a major part in the programme, as well as course specific project work and exams. One-third of the overall assessment will be attributed to an individual project involving original research or applied work. Students may gain direct support from industry during the individual project.
With an excellent reputation as one of the top vocational training pathways, graduates from this programme are highly sought after by industry. This programme is also an ideal springboard into further research at PhD level and above.

Over the last decade, more than the vast majority of our MSc graduates have gained employment in the oil industry or gone straight on to funded PhD research.

The MSc Integrated Petroleum Geoscience programme will:

1. Teach the geoscience skills needed to ensure you are well prepared to embark upon a petroleum industry career.
2. Develop the knowledge needed to communicate with and work alongside specialists in the other engineering and scientific disciplines involved in hydrocarbon exploration and production, in small, multi-disciplinary teams.
3. Enhance your interpersonal and transferable skills relevant to the hydrocarbon industry today.
4. Give you access to a dedicated space, including a computing room with high-spec server blades. A range of analytical equipment, state-of-the-art industry software packages are available for the courses and projects.

What you will study

Components of the programme focus on all aspects of upstream geoscience, from initial exploration for new prospects, through field appraisal and development, to maximising recovery from mature and declining fields. Topics covered include: seismic interpretation, petrophysical analysis, geochemical evaluation, sedimentology, structural analysis, and reservoir modelling. Skills in the analysis of the subsurface are further developed by field work on outcrops and by hands-on experience with core logging.

These topics are covered by the following courses:

- Geophysics and Petrophysics
- Applied Sedimentology
- Production Geology
- Regional Exploration
- Professional Skills incorporating International Field Trip

Project/Dissertation

Previous topics have included:

1. Classical and modern approaches to examine reservoir connectivity in a mature field, West Siberia Basin
2. Hydrocarbon Migration and Fill History of the Rosebank Field, West of Shetland, UK

How you will be assessed

Practical work, projects and reports will be assessed continuously throughout the programme. Examinations are held in December and May on the preceding term’s curriculum. An oral examination will be held. You will also be expected to present a final report on a relevant and approved major topic.
This programme provides comprehensive training in the essential aspects of the oil and gas industry, and remains up to date with the many recent advances in science and technology directly applied to industry. Subject areas studied include: geology, economics, psychology etc.

Training in commercialisation, economics and law will be important, as will an understanding of how science and technology can be applied at the cutting edge to improve hydrocarbon exploration success and recovery.

Aberdeen is widely recognised as the Energy capital of Europe. This means the University is ideally located to work alongside industry leaders, offering students a world class centre for research and education, learning from experts in their field.

Every year, the programme attracts students from wide variety of backgrounds, and appeals to both recent graduates, and industry professionals looking to increase their knowledge, skills and qualifications.

Previous students have included Geologists, Engineers and Business Managers.

What you will study

This programme covers a broad range of subjects in order to encompass all aspects related to the oil industry, from exploration, appraisal through production and decommissioning.

The course will also examine the impact of environmental, human and cultural factors on the oil industry, this will be presented via a series of case studies.

Courses include:
- Geoscience in Oil Exploration
- Introduction to Energy Economics
- Drilling and Well Engineering
- Management in Engineering: Production, Risk Management and Psychology
- Portfolio Optimisation
- Commercial Law and Regulatory Frameworks
- Remediation Technology for Geosciences
- Research Skills, Professional Development and Field Study
- Individual Project

How you will be assessed

Assessment comprises practical exercises, research papers, essays and exams. Some of the courses include ‘games’ spread over several days, and which require team and negotiating skills, as well as knowledge of technology and economics.

MSc OIL AND GAS ENTERPRISE MANAGEMENT

This dynamic, engaging and interactive programme provides a unique insight into the oil and gas industry. The programme places an emphasis on the practical application of economics, technology, lateral thinking and management techniques. This multidisciplinary degree is taught in partnership with industry experts, as well as specialists from across the University.

School/department
Geology & Petroleum Geology

Duration
12 months full-time

Intake
September and January

Entry requirements
Our minimum entry requirement for this programme is a Honours degree at a level of Upper Second-Class (2.1) or above, or its international equivalent, preferably in Geology, Geophysics, Engineering, Law, Economics, Commerce, Business or Finance or other relevant degree.

All international students, even if you have been educated in the medium of English, must meet our English Language requirements (www.abdn.ac.uk/study/international/english-requirements.php).

This programme requires that you meet the ‘Postgraduate Higher’ level of English proficiency. Poorly written personal statements may lead to applications being rejected.

Course info www.abdn.ac.uk/ogem
School info www.abdn.ac.uk/geosciences
General info www.abdn.ac.uk/study

facebook.com/universityofaberdeen
@aberdeenuni
study@abdn.ac.uk
The oil and gas industry continues to be a major provider of energy and employment globally and needs highly-skilled data managers in order to maximise current and future opportunities. Such talent will support the industry in finding ways to reduce operational costs, increase exploration success, and reduce risk; all factors which are key to achieving industry success.

The aims of the Petroleum Data Management programme is to provide advanced education and training for petroleum data managers and for those aspiring to move into the oil and gas sector. This is not an Information Technology degree, but rather an industry-led programme that deals with the specific aspects of managing physical and digital data that are used across the hydrocarbons industry to understand and evaluate the subsurface and the petroleum reserves located there. The content reflects the overview of all key data management activities of relevance to petroleum data managers working in multi-disciplinary teams.

The Petroleum Data Management programme has been set up through an agreement between the University of Aberdeen and Common Data Access Ltd (CDA), a not-for-profit subsidiary of Oil & Gas UK, which provides data management services to the UK oil and gas industry. The programme is supported by leading multinational companies including Shell, Total and Chevron.

“What good data management is key to unlocking the real value of technical and analytical applications. As an industry, we are experiencing a tremendous growth in data and to manage it successfully we will need a pipeline of talent with strong earth science and engineering skills. The Master’s programme at Aberdeen University, as well as other strategically located programs, will enable the next generation of skilled data managers to advance their careers in the oil and gas industry,”

Danny Bush, Unit Manager Subsurface Workflows, Chevron Energy Technology Company

What you will study
- Fundamentals of Petroleum Geoscience
- The Nature of Geological and Geographical Data
- Petroleum Data Governance
- Petroleum Data Quality Management
- Exploring Geological and Geographical Data
- Service & Project Management
- Data Science: An Introduction
- Law, Business, Security: Petroleum Data Management

In addition, upon successful completion of these taught courses, students undertake an extended, independent, and self-directed project. This will be assessed by means of a written report and an oral presentation.

School/department
Geology & Petroleum Geology

Duration
12 months full time, on campus
27 months, online

Intake
September

Entry requirements
A 2:1 (upper second class or above) UK Honours degree in a science discipline, or a science-based Honours degree from a non-UK institution which is judged by the University to be of equivalent worth. Those with a 2:2 (lower second-class Honours) degree may be considered if they can demonstrate they have at least 2 years of professional experience judged by the University to be of direct relevance to the programme. Please include a personal statement making your case and an employer reference letter in this case.

Applicants with other qualifications may also be considered if they can demonstrate 3+ years’ relevant experience in data management in the petroleum industry.

All International students, even if you have been educated in the medium of English, must meet our English Language requirements (www.abdn.ac.uk/study/international/english-requirements.php).

This programme requires that you meet the ‘Postgraduate Standard’ level of English proficiency.

Course info www.abdn.ac.uk/pgt/pdm
School info www.abdn.ac.uk/geosciences
General info www.abdn.ac.uk/study

facebook.com/universityofaberdeen
@aberdeenuni
study@abdn.ac.uk

MSc PETROLEUM DATA MANAGEMENT

There is a growing demand from the sector for professional petroleum data managers, possessing expertise seen as critical to maximising economic recovery.
MSc RESERVOIR ENGINEERING

This programme provides graduate engineers, geologists and other scientists with specialist knowledge and understanding of the geology, performance and management of hydrocarbon reservoirs. Our close working partnerships with industry has allowed us to design and deliver a programme that is relevant to future career opportunities.

What you will study

- Fundamentals of Petroleum Geoscience
- Petrophysics, Core Analysis and Formation Evaluation
- Reservoir Engineering
- Introduction to Energy Economics
- Principles of Static and Dynamic Modelling
- Reservoir Simulation
- Group Project and Research Skills
- Project/Dissertation

Hands-on experience of using industry-standard software (e.g. Petrel and Eclipse) in all aspects of reservoir engineering and simulation is developed within the taught courses. A group design exercise provides students with an opportunity to apply a range of concepts to the appraisal of a prospect and selection of appropriate technologies and solutions for viable development and management of oil and gas fields.

Our close working relationship with local industry ensures you are given the opportunity to visit industrial facilities and receive technical presentations by working professionals, and receive further practical exposure and awareness of professional and social responsibility.

How you will be assessed

By written examination, continuous assessment and course work as prescribed for each course. In addition, MSc candidates must submit a dissertation on their individual project.

How you will be taught

The modules are delivered by staff from the School of Geosciences, the School of Engineering and the Business School. There is also additional support from external industry professionals, who contribute to key elements of the programme.

School/department

Geology & Petroleum Geology

Duration

12 months full-time

Intake

September

Entry requirements

A UK Hons degree at 2:1 or above either in engineering or in a geoscience discipline which includes at least one modules of geophysics. Candidates with at least one year of University maths are preferred, but we will accept candidates with a good result in Higher, Advanced Higher or A-level maths, or with some other indicator of maths ability.

All international students, even if you have been educated in the medium of English, must meet our English Language requirements (www.abdn.ac.uk/study/international/english-requirements.php).

This programme requires that you meet the ‘Postgraduate Standard’ level of English proficiency.

Course info www.abdn.ac.uk/pgt/reservoir-eng
School info www.abdn.ac.uk/geosciences
General info www.abdn.ac.uk/study

facebook.com/universityofaberdeen
@aberdeenuni
study@abdn.ac.uk
Science programmes
MSc ANALYTICAL CHEMISTRY

Developing the next generation of analytical chemists ready to face challenges in industry through focused training and specialisation in advanced modern analytical methodologies.

This Royal Society of Chemistry accredited degree programme will build on your undergraduate Chemistry experience and develop specialist skills applicable to analytical, bioanalytical and environmental topics.

Through studying this programme you will gain specialist knowledge of the instrumentation and method development for the identification and quantification of natural and anthropogenic compounds at trace level. In addition you will build on your undergraduate chemistry experience of more traditional fundamentals in analytical chemistry and develop analytical thinking which is needed for leadership roles in industry and academia.

Success on the programme will open up a number of career opportunities for you. Many graduates will find careers working in energy-related industries, pharmaceutical company or will work for an environmental agency as, or with, analytical chemists.

What you will study

This programme is structured across three semesters with candidates being required to attend the designed programme of courses as described below.

- Advanced Analytical Methodologies A
- Advanced Analytical Methodologies B
- Practical Exercise and Professional Skills in Analytical Chemistry
- Research Techniques and Professional Skills and Problem Solving in Theory and Practice
- Research Project A (Mini-Project)
- Extended Research Project

How you will be assessed

When you reach the end of a semester of study, you have the option of graduating with the qualification reached or continuing into the next semester of study to enhance your qualification to the next level. Only one qualification can and will be awarded when enough credits are achieved.

Taught components are assessed by a combination of continuous assessment, written examinations and oral examinations. The Extended Research Project will be assessed by dissertation.

How you will be taught

The programme contains theoretical and practical modules, formal teaching as well as application oriented research training, and professional skills such as project planning management exercises.

School/department

Department of Chemistry, School of Natural and Computing Sciences

Duration

12 months full-time
24 months part-time

Intake

September

Entry requirements

Candidates will normally have a BSc in Chemistry, Applied Chemistry or Industrial Chemistry at a UK Honours degree level 2:2, or a Chemistry related discipline such as Chemical Engineering, Environmental Science, Microbiology, Biochemistry, Geology or Bachelor Education in Chemistry with a strong emphasis on physical sciences, at 2:1 Honours level degree or equivalent. The Selector will examine each degree transcript to ensure candidates are competent in the key areas of Chemistry required to be successful on the programme.

Even if you have been educated in the medium of English you must meet our English Language requirements. These are located at www.abdn.ac.uk/study/international/english-requirements.php.

This programme requires that you meet the 'Postgraduate Standard' level of proficiency.

Course info www.abdn.ac.uk/anchem
School info www.abdn.ac.uk/ncss
General info www.abdn.ac.uk/study

facebook.com/universityofaberdeen
@aberdeenuni
study@abdn.ac.uk
This multidisciplinary MSc programme aims to train students to recognise and understand the threats and conflicts in the environment today and appreciate the steps required to develop solutions.

The systematic approach of this MSc programme enables students to deal with all scales of the environment. Throughout their studies students will have various opportunities to participate in work outdoors and apply theoretical and field work knowledge to real life situations. Students will also gain experience using a range of tools for biological, chemical and physical measurement as well as models and data handling methods. Most importantly, at Aberdeen students will be part of a community that will help improve their knowledge and awareness of environmental science.

The MSc is aimed at graduates looking to specialise, enhance their skills and knowledge or retrain in environmental science and also academics and Government employees looking to further their career, develop industry contacts and remain at the forefront of environmental science.

What you will study

The taught part of the MSc Environmental Science programme involves students taking eight courses over two terms. Course options are varied and normally chosen from those available within the environmental sciences timetable. However, other courses may be selected from those available through the School of Biological Sciences’ level 5 modular options. Compulsory courses include Environmental Pollution; Core skills in Environmental Science; Applications of GIS. Optional courses include, Plant Ecology; Global Soil Geography; Soils for Food Security; Environmental Impact Assessment, Catchment Management and Remediation Technology.

A range of teaching methods are used at Aberdeen to ensure that you are able to learn in a way that suits your learning style and enables you to achieve the best possible outcome. Our class sizes are small and we have a low tutor to student ratio, meaning you will have the full support of your group tutors.

How you will study

The teaching of our MSc Environmental Science programme includes lectures, extensive laboratory and field work as well as self-directed learning and tutorials to support the course material. Often lectures are recorded and can be viewed again when required. Relevant laboratory skills are taught in fully equipped, modern laboratories.

The MSc also provides students with ample opportunity to learn outside the classroom so you can apply both theory and practice to real life situations. Some of the teaching methods employed include:

- Outdoor field work
- Access to industry experts
- Insight into real-life situations

The dedicated research project you will undertake as part of the MSc provides training in technical skills, recording results and observations and analysing the results. Additional research project experience is available for those keen to engage in the on-going research taking place at the SBS.

Assessment methods

The degree programme is assessed on the basis of performance in the research project and continuous assessment of coursework.
Being able to apply the *fundamentals* of energy economics and finance to address real-world problems widened my perspective and *prepared* me for working in industry.
After successful completion of the MSc Oil and Gas Chemistry Programme, Davina began a *successful career* with Global Oilfield Service Company, Baker Hughes.

Davina McLelland, Canada
MSc in Oil and Gas Chemistry
MSc OIL AND GAS CHEMISTRY

This unique and industry tailored programme trains the next generation of industry-ready professional Chemists for the oil and gas sector.

This programme will build on your undergraduate chemistry experience and develop specialist skills applicable to the oil and gas industry. Despite the growing research emphasis on renewable forms of energy generation and the anticipated energy gap between need and supply, the oil and gas industry is expected to remain a primary source of energy provision for the foreseeable future; oil and gas is projected to meet 60% of the world’s energy needs in 2030.

In the current environmentally conscious climate, the industry recognises the need for efficiency and its environmental responsibility. This postgraduate programme focuses on the chemistry applicable to topics within these themes, addressing materials and energetics relevant to production and refining, and environmental impact and remediation.

The University has a central presence within Aberdeen, the Energy Capital of Europe and this Royal Society of Chemistry accredited programme has been designed in collaboration with industry to ensure that it is relevant and current. You will also be given the opportunity to build up your own network of industry contacts.

What you will study

The Programme is structured across three semesters with candidates being required to attend the designated programme of courses as described below. Each level acts as a prerequisite for the next (i.e. Certificate, Diploma, MSc). Students who reach the end of a semester of study have the option of graduating with the qualification reached or continuing into the next semester of study to enhance their qualification to the next level. Please note: only one qualification can, and will, be awarded.

Semester 1
- Materials for the Oil & Gas Industry
- Processes Materials and Bioremediation for the Energy Industry
- Chemistry at Interfaces and Enhanced Oil Recovery
- Analytical and Instrumental Methods

Semester 2
- Chemistry of Refinery and Natural Gas Processes
- Flow Assurance and Oil Field Chemicals
- Applied Analytical and Instrumental Methods
- Industrial Engagement and Applications

Only candidates who complete the above programme at an appropriate standard will be allowed to progress to Stage 3

Semester 3
- Extended Research Project/Dissertation

How you will be assessed

Assessment is by course work, by written examination or by a combination of these as prescribed for each course. The Extended Research Project will be assessed by dissertation. The degree of MSc shall not be awarded to a candidate who fails to complete the Extended Research Project at an appropriate standard, irrespective of their performance in other courses.

School/department
Department of Chemistry, School of Natural and Computing Sciences

Duration
12 months full-time

Intake
September and January

Entry requirements
Our minimum entry requirement for this programme is a UK Honours degree at 2:2 (or an honours degree from a non-UK institution which is judged by the University to be of equivalent worth) in Chemistry, Applied Chemistry or Industrial Chemistry. Applicants who have a UK Hons degree (or equivalent) at 2:1 or above in Chemical Engineering, Environmental Chemistry, Microbiology, Biochemistry, Geology or Bachelor Education in Chemistry will be considered.

Even if you have been educated in the medium of English you must meet our English Language requirements. These are located at www.abdn.ac.uk/study/international/english-requirements.php.

This programme requires that you meet the ‘Postgraduate Standard’ level of English proficiency.

Course info www.abdn.ac.uk/ogc
School info www.abdn.ac.uk/ncs
General info www.abdn.ac.uk/study

facebook.com/universityofaberdeen
@aberdeenuni
study@abdn.ac.uk
Coping with the financial responsibility of full-time study is a major concern for many people. For those who require assistance, our scholarships can prove to be a very welcome support. There is competition for all our scholarships but we would encourage you to apply for any scholarship that is relevant to you and your programme of study. The best place to start your search is on our online funding database, which lists all the bursaries and scholarships available each year. It also includes details on the level of funding contribution and eligibility criteria for each, as this will vary between different scholarship and bursary schemes.

In addition to scholarships funded by the University of Aberdeen, you may be eligible to apply for scholarships which are:

- Offered/supported by the UK Government
- Offered by the University of Aberdeen
- Offered by Industry specific organisations
- Offered by local governments, government related bodies and charities to their own citizens looking to study in the UK
- Offered to individuals studying for a specific discipline or subject

You will find the most up-to-date list of scholarships available here:

- www.abdn.ac.uk/study/international/scholarships-and-funding.php
- www.abdn.ac.uk/funding
- Your home country Ministry for Education
Our energy research sees geologists, chemists and engineers working closely with economists and legal experts to maximise opportunities for production of hydrocarbons and renewable energy in the most cost-effective manner, including conventional and unconventional hydrocarbons.

We are analysing how behaviour and choice is adapting transport infrastructure, the built environment and energy efficiency initiatives to enable us to better manage and respond to demand for future energy supply.

We are examining methods to facilitate new energy production, be this related to cross border co-operation, ownership and licensing, environmental management, or risk mitigation. Lawyers work with economists, engineers, geologists and environmental scientists to ensure the resources needed to meet energy demand are effectively deployed.

We investigate materials science, flow assurance, and instrumentation, combined with research into industrial safety and human factors, focused towards maximising the operational efficiency of oil and gas assets by maximising production and minimising cost.

Our researchers are working to optimise the integration of electrical energy generated from wind and marine resources into regional grid distribution systems to ensure a stable and reliable supply for corporate and domestic users.

This is just a flavour of our work and an example of some of the areas that we offer postgraduate research opportunities in.

POSTGRADUATE RESEARCH OPPORTUNITIES

Our key areas of focus

Law and Regulation
Unconventionals

Oil and Gas Exploration and Production
Subsea

Safety Reliability and Integrity
Environmental Monitoring
Decommissioning
Carbon Capture and Storage
Energy Economics
Renewable Energy
Energy, Demand and Efficiency
Energy, Society and Culture

From left to right: Data Science, Energy, Society and Culture, Energy, Demand and Efficiency, Renewable Energy, Carbon Capture and Storage, Decommissioning, Environmental Monitoring, Safety Reliability and Integrity, Subsea, Oil and Gas Exploration and Production, Unconventionals, Law and Regulation.

Apply here:
www.abdn.ac.uk/study/postgraduate-research/how-to-apply-1639.php

For a full list of PhD opportunities, visit:
www.abdn.ac.uk/study/postgraduate-research/current-phd-opportunities-1640.php

Centre for Energy Law:
www.abdn.ac.uk/law/research/centre-for-energy-law

The Aberdeen Centre for Research in Energy Economics and Finance (ACREEF):
www.abdn.ac.uk/research/acreef

Centre for Transport Research (CTR):
www.abdn.ac.uk/ctr

Centre for Applied Dynamics Research:
www.abdn.ac.uk/engineering/research/centre-for-applied-dynamics-research-128.php

Centre for Innovative Building Materials and Technology:

Industrial Psychology Research Centre (IPRC): www.abdn.ac.uk/iprc

Institute for Complex Systems and Mathematical Biology (ICSMB):
www.abdn.ac.uk/icsmb

Oceanlab:
www.oceanlab.abdn.ac.uk

LRF Centre for Safety & Reliability Engineering:
www.abdn.ac.uk/engineering/research/lrf-safetyeng-127.php

Research in Petroleum Geology:
www.abdn.ac.uk/study/postgraduate-research/research-areas/875/geology-and-petroleum-geology/

Chemistry research in energy:
www.abdn.ac.uk/study/postgraduate-research/research-areas/861/chemistry/
I chose Aberdeen because it is situated in the heart of the oil and gas industry in the UK.
<table>
<thead>
<tr>
<th>Course Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Mechanical Engineering (MSc)</td>
<td>38</td>
</tr>
<tr>
<td>Advanced Structural Engineering (MSc)</td>
<td>25</td>
</tr>
<tr>
<td>Decommissioning (MSc)</td>
<td>37</td>
</tr>
<tr>
<td>Energy and Environmental Law (LLM)</td>
<td>18</td>
</tr>
<tr>
<td>Energy Law (LLM)</td>
<td>19</td>
</tr>
<tr>
<td>Energy Management (MBA)</td>
<td>10</td>
</tr>
<tr>
<td>Energy Politics and Law (MSc)</td>
<td>21</td>
</tr>
<tr>
<td>Environmental Science (MSc)</td>
<td>54</td>
</tr>
<tr>
<td>Geographical Information Systems (MSc)</td>
<td>45</td>
</tr>
<tr>
<td>Geophysics (MSc)</td>
<td>46</td>
</tr>
<tr>
<td>Global Subsea Engineering (MSc)</td>
<td>40</td>
</tr>
<tr>
<td>Integrated Petroleum Geoscience (MSc)</td>
<td>48</td>
</tr>
<tr>
<td>Oil and Gas Chemistry (MSc)</td>
<td>57</td>
</tr>
<tr>
<td>Oil and Gas Engineering (MSc)</td>
<td>28</td>
</tr>
<tr>
<td>Oil and Gas Enterprise Management (MSc)</td>
<td>49</td>
</tr>
<tr>
<td>Oil and Gas Law (LLM)</td>
<td>20</td>
</tr>
<tr>
<td>Oil and Gas Structural Engineering (MSc)</td>
<td>29</td>
</tr>
<tr>
<td>Petroleum Data Management (MSc)</td>
<td>50</td>
</tr>
<tr>
<td>Petroleum Engineering (MSc)</td>
<td>31</td>
</tr>
<tr>
<td>Petroleum, Energy Economics and Finance (MSc ECON)</td>
<td>11</td>
</tr>
<tr>
<td>Process Safety (Chemical Engineering) (MSc)</td>
<td>32</td>
</tr>
<tr>
<td>Project Management (MSc)</td>
<td>33</td>
</tr>
<tr>
<td>Renewable Energy Engineering (MSc)</td>
<td>34</td>
</tr>
<tr>
<td>Reservoir Engineering (MSc)</td>
<td>51</td>
</tr>
<tr>
<td>Strategic Studies and Energy Security (MSc)</td>
<td>12</td>
</tr>
<tr>
<td>Subsea Engineering (MSc)</td>
<td>39</td>
</tr>
</tbody>
</table>

Life defining learning

www.abdn.ac.uk/study