A possible plant-mediated feedback between elevated CO$_2$, denitrification and the enhanced greenhouse effect

David Robinsona,b,*, Jann P. Conroyb

aCellular and Environmental Physiology Department, Scottish Crop Research Institute, Dundee DD2 5DA, U.K.
bSchool of Horticulture, University of Western Sydney Hawkesbury, Richmond, NSW 2753, Australia

Accepted 25 June 1998

Abstract

Natural abundances (δ) of 15N were used to detect effects of elevated atmospheric CO$_2$ concentration ([CO$_2$]) and soil wetness on soil N transformations in the presence or absence of plants. An elevated [CO$_2$] of 1000 µl l$^{-1}$ reduced water use by the perennial C$_4$ grass Panicum coloratum and stimulated root and whole-plant growth. Soil remained wetter between infrequent irrigations than in soil supporting P. coloratum grown in an ambient [CO$_2$] (350 µl l$^{-1}$). The δ^{15}N value of soil nitrate increased from -2.4 to $+9.6\%$ as nitrate was depleted from the soil, but remained unchanged in unplanted soil. The change in δ^{15}N of soil nitrate was greatest in frequently watered soil regardless of [CO$_2$], and in infrequently watered soil only in elevated [CO$_2$]. It was least in the infrequently watered, ambient [CO$_2$] treatment. Isotope mass balances and 15N/14N fractionation theory identified denitrification as the most probable cause of this effect, through the effect of elevated [CO$_2$] on soil wetness. Nitrification, nitrogen assimilation, leaching or ammonia volatilisation were unlikely causes. The data suggest a positive, plant-induced effect of elevated atmospheric [CO$_2$] on denitrification. The possibility exists, therefore, for a positive feedback between elevated atmospheric [CO$_2$], a greater soil-to-atmosphere N$_2$O flux and an exacerbation of the enhanced greenhouse effect.

#1998 Elsevier Science Ltd. All rights reserved.

Keywords: Denitrification; Elevated CO$_2$; Panicum coloratum; δ^{15}N

1. Introduction

The concentration of CO$_2$ in the atmosphere ([CO$_2$]) can influence biological processes in soil. This influence is rarely direct, but is transmitted indirectly, via plants (Körner and Arnone, 1992; Hungate et al., 1997a,b,c). Plants are often larger when grown in elevated [CO$_2$], whether C$_4$ or C$_3$ species (Ghannoum et al., 1997). Much of the growth response to atmospheric [CO$_2$] is below-ground (Van Vuuren et al., 1997), but this depends on, among other things, nutrient availability (Conroy, 1992). When there is a growth response to atmospheric [CO$_2$], it is possible that, per plant, more C as exudates and detritus is transferred into the soil. If some of this C is used by heterotrophic microbes, there will probably be an effect on soil N transformations which can be traced back to the increased [CO$_2$] (Hungate et al., 1997c).

Elevated [CO$_2$] may influence soil in another way. O$_2$ consumption by microbes or roots may be increased by the provision of more C or by there being more living roots per unit soil volume under elevated [CO$_2$] (see above). In well-aerated soil, O$_2$ consumption is balanced by diffusion from atmosphere, but this is impeded significantly by moisture. O$_2$ diffusivity in water is smaller by a factor of 10^4 compared with diffusion in air. Therefore, the wetter the soil, the more likely it is that the inward diffusion of O$_2$ will fail to compensate fully for its consumption. Localised hypoxia or anoxia then results.

Soil wetness is influenced by, among other things, transpiration, and this also depends on atmospheric [CO$_2$]. Elevated [CO$_2$] reduces stomatal conductances of C$_3$ and C$_4$ species (Ghannoum et al., 1997). Such plants consequently have slower transpiration rates and so remove less water from the soil per unit time (Jackson et al., 1994; Samarakoon and Gifford, 1996; Hungate et al., 1997a; Van Vuuren et al., 1997). The
soil may then remain slightly wetter between rain events or irrigations. Soil wetness may then affect soil aeration as described above. If it does, N transformations may be subject to this indirect influence of atmospheric [CO₂].

Clearly, the associations between [CO₂] and soil N transformations are complex. It is impracticable to measure all potentially important processes. But an alternative approach is available. It is sometimes possible to monitor the operation of a complex system by measuring variations in one or a few key features, e.g. particular substrates or products. Then, it is necessary to use that information to deduce which process(es) were most likely to have been responsible for those variations. This is one of the tasks to which natural abundances of stable isotopes are particularly well suited (e.g., Mariotti et al., 1981, 1988; Handley and Raven, 1992).

Stable isotope natural abundances are measured by mass spectrometry as ratios (\(R\)) of heavy to light isotopes. These are usually reported as \(\delta\) values (%) defined as:

\[
\delta = \frac{R_{\text{sample}} - R_{\text{standard}}}{R_{\text{standard}}} \times 10^3
\]

\(R_{\text{sample}}\) is the isotope ratio of a sample and \(R_{\text{standard}}\) that of the standard material with which the sample is compared. For \(^{15}\text{N}/^{14}\text{N}\), the standard is atmospheric \(\text{N}_2\) and \(R_{\text{standard}} = 0.0036765\).

Changes \(\delta\) values may reflect the operation of processes which cause isotope fractionations, e.g. reactions of substrates containing heavy isotopes are often slower than those containing light isotopes. This can yield products with \(\delta\) values different from those of the substrates. The size of such a fractionation may be characteristic of the reaction. Or, a change in \(\delta\) may reflect the mixing of two or more pools with different isotopic compositions (see, e.g., Mariotti et al., 1981). Such processes may leave an isotopic ‘legacy’ or ‘footprint’ in substances in which they have occurred. Variations in \(\delta\) values can provide clues to the processes causing those variations after the processes have happened, provided that further isotopic changes are minimal. Such clues provide circumstantial — rather than definitive — evidence for the occurrence of specific processes (e.g., Koba et al., 1997). Nevertheless, this approach has at least three distinct advantages over others: unlike the addition of isotopically enriched tracers, it does not disturb the normal chemistry of a system; it can report on many processes which may be operating simultaneously, or have operated, in a system; and \(\delta\) values can be tested against rules which constrain them within predictable limits (see e.g., Mariotti et al., 1981).

Here we describe the use of \(\delta^{15}\text{N}\) to explore the possibility that elevated [CO₂] can, via plants, influence soil N transformations. We grew plants exposed to different [CO₂] and availabilities of soil water, in a soil fertilised with only one major N source, NO₃⁻. We aimed to detect effects of plants on soil N by measuring the \(\delta^{15}\text{N}\) values of residual NO₃ in planted soil, and comparing the latter with the \(\delta^{15}\text{N}\) values of NO₃ in unplanted soil. Then, by comparing experimentally-determined \(\delta^{15}\text{N}\) values with known \(^{15}\text{N}/^{14}\text{N}\) effects for specific processes (e.g., N assimilation, denitrification, nitrification), applying \(^{15}\text{N}/^{14}\text{N}\) fractionation theory and calculating isotope mass balances, we aimed to identify likely processes responsible for observed \(\delta^{15}\text{N}\) patterns in relation to the different environmental variables.

2. Materials and methods

2.1. Soil and plants

Soil, an acid clay loam weathered from basalt, was collected from bushland at Mt. Tomah, NSW, Australia. Its pH (in water) was 4.7. The C-to-N mass ratio of the soil was 17.9 ± 1.85. The soil’s total N had a mean \(\delta^{15}\text{N}\) value of +6.7 ± 0.35‰, as determined by continuous-flow isotope ratio mass spectrometry (CF-IRMS; see below).

Fertiliser and lime were mixed with sieved soil (5 mm mesh) in the following amounts (g kg⁻¹ dry soil): Ca(NO₃)₂, 2.64 (=0.45 g N, \(\delta^{15}\text{N} = -1.6 \pm 0.1\%\)); KNO₃, 0.82 (=0.11 g N, \(\delta^{15}\text{N} = +0.8 \pm 0.2\%\)); CaHPO₄, 1.86; K₂SO₄, 0.90; MgCO₃, 3.02; CaCO₃, 4.18; CuSO₄.5H₂O, 0.03; H₃BO₃, 0.04. The soil’s pH increased to 6.5 as a result. Each pot received 3.1 g NO₃-N whose net \(\delta^{15}\text{N}\) value was -1.1 ± 0.1%.

Seven kg of moist, fertilised soil (=5.5 kg dry soil) at a mass wetness of 0.28 g g⁻¹ dry soil) were packed into each of 96 cylindrical pots, 15 cm dia, 40 cm tall. After packing, water was added to the soil in each pot to give a mass wetness of 0.4 g g⁻¹, which was close to its field capacity. The base of each pot was perforated, but no significant drainage occurred. Each pot was weighed and allocated randomly to one of two controlled environment chambers (see below) and kept uncovered for three weeks before sowing. The mean concentration of NO₃ in the soil solution ([NO₃⁻]) immediately before sowing was 42 ± 7 mM (≈1.2 g NO₃-N per pot) and this had a \(\delta^{15}\text{N}\) value of -2.4 ± 0.5‰. The concentration of extractable NH₄⁺ was always < 0.1 mM. NO₃⁻ was, therefore, the major form of plant-available N in this soil.

Approximately 25 caryopses of the fast-growing perennial C₄ grass Panicum coloratum L. cv. Bambatsi...
(Makarikari grass; Lloyd, 1981) were sown directly onto the soil in 40 pots in each of the two chambers. The remaining eight pots in each chamber were left unplanted. Sowing date was designated as day 0 of the experiment. Seedlings emerged 3 d later. Five days after emergence (day 8), seedlings were thinned to 6 per pot.

2.2. Treatments

Two environmental factors were varied: atmospheric [CO₂] and soil wetness. [CO₂] was maintained at 350 µl l⁻¹ (‘ambient’) in one chamber and at 1000 µl l⁻¹ (‘elevated’) in the other, as described previously (Ghannoum et al., 1997). Soil wetness was controlled by supplying water daily (‘frequent’ watering) to half the pots in each chamber (20 planted and 4 unplanted pots) or every 3–7 d to the others (‘infrequent’ watering): see Van Vuuren et al. (1997). Randomly selected pots in each treatment (including the unplanted controls) were weighed daily to determine water losses. It was assumed that the losses from weighed pots reflected those from other pots in the same treatment. Losses were replaced by manual watering to restore the soil wetness to 0.4 g g⁻¹ dry soil in each treatment. This method was found to be inaccurate until daily water loss exceeded ca. 10 g per pot, and this occurred after 16 d.

Planted pots were arranged in blocks within chambers to minimise position effects, each block containing five pots per watering treatment. Both chambers were maintained at 25°C, day, 20°C night. Photosynthetically active radiation was 750 µmol m⁻² s⁻¹ at pot height, and daylength 12 h. Relative humidity was >90%.

2.3. Sampling and analyses

Five planted pots and one unplanted pot were sampled from each treatment 21, 28, 36 and 41 d after sowing. Plant material was bulked to form three samples — leaves, stems and roots — per pot. Plants remained vegetative throughout. Shoots were cut at soil level and divided into leaves and stems. Roots were removed manually from soil and washed. All plant material was weighed fresh and oven-dry.

Root-free soil from planted pots, and samples from unplanted controls, were weighed fresh and after oven-drying to estimate soil wetness at harvest. From each pot, a sub-sample of root-free soil (10 g fresh wt) was shaken for 1 h with 50 ml 2 M KCl solution to extract NO₃⁻ and NH₄⁺. NO₃⁻ and NH₄⁺ concentrations in the KCl extracts were determined colorimetrically (Rand et al., 1976) using a flow-injection analyser (Flow Solution 111, Alphchem, NSW).

NO₃⁻ in each extract was concentrated for δ¹⁵N analysis using a reduction — microdiffusion procedure. Extracts containing <50 µg NO₃-N (the minimum weight of N for reliable δ¹⁵N determination by CF–IRMS: Scrimgeour and Robinson, 1999) were discarded. For each remaining extract, that volume which contained 50 µg NO₃-N (as determined colorimetrically) was shaken with MgO and Devarda’s alloy for 72 h in a sealed container to quantitatively reduce NO₃⁻ to NH₃. KNO₃ standards containing 50 µg NO₃⁻ N were treated similarly. Liberated NH₃ was trapped as NH₄⁺ on an acidic glass fibre trap sealed in polytetrafluoroethylene (PTFE) tape floated on the surface of each extract (Sørensen and Jensen, 1991; Stark and Hart, 1996; Holdus and Wishart, pers. comm.). The PTFE tape was removed from each trap and the latter dried in a desiccator for five days. The δ¹⁵N value of each trap, i.e., the δ¹⁵N of soil NO₃⁻ (δₙιατrate), was determined by CF–IRMS (Europa Scientific, Crewe, U.K.). Analytical precision (SD) was <1‰ for NO₃⁻ standards.

The Devarda’s alloy–MgO reduction is not specific to NO₃⁻. Other nitrogenous anions may also be reduced to volatile derivatives and so contaminate N trapped on the glass fibre. The resulting δ¹⁵N of the glass fibre is then not necessarily δₙιατrate (Scrimgeour and Handley, pers. comm.). To account for this, only those samples in which recoveries of N (as measured by CF–IRMS) from the reduction — microdiffusion procedure were within 10% of those expected from colorimetric analysis (which was specific for NO₃⁻), and were from runs in which recoveries of standards were quantitative, were accepted. Quantitative recovery was essential to avoid generating isotopic artefacts during the microdiffusion step. If some NH₄⁺ in solution was not volatised, or some volatised NH₃ not trapped on the glass fibre, the δ¹⁵N value of any trapped N could have been very different from the true δₙιατrate. Fractionations of up to 34‰ can occur when NH₄⁺ ↔ NH₃ (see Handley and Raven, 1992), so artefacts may easily occur. These stringent criteria led to the acceptance of only 33 δₙιατrate data out of a possible 98. Published data for δₙιατrate obtained using the Devarda’s alloy–MgO reduction which have not been screened for isotopic artefacts should be treated with caution.

2.4. Data analysis

The amounts of water added to each pot were converted into amounts of water used by the plants by deducting amounts lost by evaporation from unplanted pots. Cumulative water use was calculated by summing the amounts of water used between consecutive waterings. Estimates of variation in water use among replicates could not be calculated. Water use was estimated
as water lost by only one selected pot per treatment (after adjusting for evaporation from unplanted pots). The dry weight of plant material in each pot was obtained by summing the dry weights of leaves, stems and roots.

Values of δ_{nitrato} were converted to $^{15}\text{N}/^{14}\text{N}$ ratios (using Eq. (1)) for statistical analysis (to allow log-transformation of negative δ_{nitrato} values). Treatment, harvest and block effects were tested by analysis of variance of log-transformed data (to normalise variances) of soil wetness, plant and root dry weight, $[^{1}\text{NO}_3]$ and $^{15}\text{N}/^{14}\text{N}$ ratio of soil NO_3^-. Differences between means were compared using Scheffé’s post-hoc test (Sokal and Rohlf, 1995, p. 254). Data quoted in the text are back-transformed means and 95% confidence limits.

The net $^{15}\text{N}/^{14}\text{N}$ fractionation factor (ε) describing changes in the $^{15}\text{N}/^{14}\text{N}$ ratio of soil NO_3^- in relation to its concentration in the soil solution was estimated using the Rayleigh equation (Mariotti et al., 1981; Hoefs, 1987, p. 11):

$$R^* = f^{(1/\varepsilon - 1)}$$

where R^* is the $^{15}\text{N}/^{14}\text{N}$ ratio of NO_3^- as a fraction of the initial $^{15}\text{N}/^{14}\text{N}$ ratio, f is the fraction of the initial NO_3^- remaining in the soil at the time of measurement. ε was estimated from a zero-intercept regression of $\ln R^*$ on $\ln f$. From Eq. (2), the slope of this regression was, by definition, $(1/\varepsilon) - 1$, from which a value for ε was obtained (see, e.g., Mariotti et al., 1981; Koba et al., 1997). ε was calculated separately for each treatment. A convenient transformation of ε onto the % scale allowed direct comparison with δ values:

$$\varepsilon = (\varepsilon - 1) \times 1000$$

Positive values of ε denote a discrimination against ^{15}N in a substrate compared with a product.

3. Results

3.1. Plant growth and water use

Treatments influenced total dry matter production at only the last two harvests (Fig. 1). By the end of the experiment, plants grown in ambient $[\text{CO}_2]$ were significantly smaller when watered infrequently ($p=0.001$). Watering frequency had no effect on total dry matter production at elevated $[\text{CO}_2]$. With frequent watering, there was no difference in the final dry weight of whole plants grown in ambient or elevated $[\text{CO}_2]$. The allocation of dry matter to roots was 15–40% of total dry matter production (Fig. 1).
ated [CO₂] treatments where [NO₃⁻] fell to <3 mM and denitrate increased to +9.5 ± 2.2‰. [NO₃⁻] decrease and ¹⁵N enrichment in soil NO₃⁻ were slightly smaller in the infrequently watered, elevated [CO₂] treatment, and least of all in the infrequently watered, ambient [CO₂] treatment. Even in the latter, δ nitrate changed significantly from its initial value (−2.4‰) to +1.4 ± 2.0‰.

Values of ε (Eq. (3)) were not significantly different among treatments (including the unplanted control) and ranged from +2.7 to +5.8‰. When averaged across all treatments, the mean value of ε was +4.0 ± 0.6‰, as derived from all the δ nitrate data (n = 33, r = −0.843, p < 0.001).

δ nitrate was correlated with soil wetness before watering as averaged for all harvests (r = +0.960, p < 0.01; Fig. 4). The smallest change in δ nitrate occurred in what was, on average, the driest soil, in the infrequently watered, ambient [CO₂] treatment. The difference in soil wetness between the infrequently watered treatments is explained by the smaller water use under elevated [CO₂] (Fig. 1).

4. Discussion

Our results can be summarised as follows. Soil NO₃⁻ became ¹⁵N-enriched during the experiment but only in the presence of plants. The degree of enrichment depended on treatment. When frequently watered, the ¹⁵N-enrichment of NO₃⁻ was large, whether plants were grown in ambient or elevated [CO₂]. [NO₃⁻] was correspondingly decreased. When infrequently watered, a large ¹⁵N-enrichment of NO₃⁻ occurred only under elevated [CO₂]; in ambient [CO₂], infrequent watering was associated with a smaller, but still significant, enrichment and with a smaller decrease in [NO₃⁻]. The most significant changes in [NO₃⁻] and δ nitrate occurred before the first harvest. To explain δ¹⁵N patterns in terms of underlying processes, lengthy and detailed arguments are inevitable as the issues involved are
complex (e.g., Mariotti et al., 1988). And, because the same δ^{15}N data may often be interpreted in alternative ways, it is important that all possibilities are examined critically to assess which provide(s) the most likely explanations for the data. We begin with denitrification.

4.1. Denitrification

Denitrification — an anaerobic process — is stimulated by hypoxia, other things being equal and, sometimes, by plants (Smith and Tiedje, 1979; Klemedtsson et al., 1987; Bakken, 1988). Denitrification in the field is episodic and localised, being restricted to times when and places where NO$_3^-$ and C are readily available and O$_2$ is not. N$_2$O derived from denitrification is often further reduced to N$_2$ as [O$_2$] approaches zero. Denitrification discriminates against 15N in NO$_3^-$. Provided that some NO$_3^-$ remains unreduced, denitrification results in δ_{nitr} becoming more positive (Chien et al., 1977). ε values for denitrification from unplanted, waterlogged soils amended with glucose range from +4‰ to +33‰ (Chien et al., 1977) to +33‰ (Mariotti et al., 1982a).

Had significant denitrification occurred in the 3 weeks between the addition of fertiliser and sowing, δ_{nitr} would have become more positive than the δ^{15}N value of fertiliser NO$_3^-$, and [NO$_3^-$] would have decreased. There was a decrease (from 3.1 to 1.2 g) in the amount of NO$_3^-\cdot$N in each pot, consistent with a denitrification loss of NO$_3^-$. This was not, however, accompanied by any 15N-enrichment in residual NO$_3^-$. Processes other than denitrification (e.g., immobilisation) were more likely to have caused the change in [NO$_3^-$] in unplanted soil before 0 d.

There was, however, evidence for denitrification having taken place after 0 d, particularly in planted pots. Five pieces of evidence support this possibility. First, there was a 15N-enrichment of up to 12‰ in soil NO$_3^-$ compared with the initial δ_{nitr}. This occurred with an ε value of +4‰, at the lower end of the range expected for denitrification. Turner et al. (1987) found that the δ^{15}N value of NO$_3^- +$ NH$_4^+$ extracted from an Australian arable soil became up to 11‰ more positive as [NO$_3^-$] and [NH$_4^+$] decreased. Soil inorganic N became most 15N-enriched in planted soil, as in our study. ε values between +6 and +10‰ can be calculated from Turner et al.’s data. Field studies in which denitrification was suspected of 15N-enriching residual NO$_3^-$ have produced ε values of +5 to +6‰ (Mariotti et al., 1988; Koba et al., 1997).

Second, the linear relation between \ln [NO$_3^-$] and δ_{nitr} (Fig. 3) was characteristic of a Rayleigh process (Mariotti et al., 1982a). Rayleigh kinetics apply strictly to isotopic changes in ‘closed’ systems, i.e., those with a finite supply of substrate which is consumed as a product accumulates. A Rayleigh equation can describe isotopic fractionations in an ‘open’ system if one rate-limiting process dominates, as it often does in biological systems (O’Leary, 1988). So, for example, Mariotti et al. (1988) used Rayleigh theory to show that denitrification, and not mixing, probably dominated isotopic changes in NO$_3^-$ in a French aquifer. Koba et al. (1997) used a similar approach to infer the occurrence of intermittent denitrification in Japanese forest soils. Fig. 3 suggests that denitrification occurred in our experiment. Had significant mixing of NO$_3^-$ pools occurred (e.g., as a result of nitrification: see below), the relation between [NO$_3^-$] and δ_{nitr} (Fig. 3, inset) would have been linear, not curved (Mariotti et al., 1988).

Third, the denitrification rates required to produce the observed changes in δ_{nitr} were plausible. We know the amount of NO$_3^-$ initially available and that present at the end of the experiment. We also know δ_{nitr} (Fig. 3), and estimated a mean value for ε (+4‰, i.e., $x = 1.004$). Inserting these data into Eq. (2) and solving for f, we obtain $1 - f$, the fraction of the initial NO$_3^-$ lost from the system, having first allowed for NO$_3^-$ uptake by the plants. The fraction $1 - f$ was 0.61–0.95, equivalent to mean daily denitrification rates of 5.0–6.4 kg N ha$^{-1}$. These rates are large compared with those measured in cool, temperate soils. Addiscott et al. (1991, p. 30) quoted peak daily rates of 30 kg ha$^{-1}$, and a rate one-tenth of this as more usual.

Fourth, denitrification is stimulated by hypoxia. If denitrification did cause the observed changes in δ_{nitr}, we would expect a positive correlation between soil wetness and δ_{nitr}, and this was found (Fig. 4).
Fifth, the effect on δ_{nitrate} was greatest in soil whose $[\text{NO}_3^-]$ had been decreased most and which supported the largest plants. It was least in unplanted soil. Stimulations of denitrification in NO$_3^-$-rich, planted soil have been attributed to the provision of root-derived C (Smith and Tiedje, 1979) or to O$_2$ depletion (Klemmedson et al., 1987). It would be reasonable, therefore, to expect a positive correlation between root mass and the change in δ_{nitrate}. There was no overall correlation between root dry weight and δ_{nitrate} in our experiment ($r = -0.10$, $p < 0.05$). But there was a difference in root growth between the infrequently watered treatments; root systems under elevated atmospheric [CO$_2$] were ultimately larger than in ambient [CO$_2$] ($p < 0.01$).

The ε value estimated for unplanted soil was the same as that in the planted treatments. This might suggest that whatever process(es) changed δ_{nitrate} in the planted soils also changed it in unplanted, so eliminating *P. coloratum* as an agent of change. However, there was no statistical change in [NO$_3^-$] in unplanted soil compared with the large changes in the planted treatments (Fig. 3). This illustrates that δ^{15}N data alone cannot always provide a clear picture of N transformations: they must, ideally, be combined with information about the amounts of N involved in those transformations.

It was striking that we found no significant differences in [NO$_3^-$] and δ_{nitrate} after the first harvest. The major changes in [NO$_3^-$] and δ_{nitrate} occurred in planted soil between 0 and 21 d. Despite the evidence in the preceding paragraphs, it might be argued that the effects on δ_{nitrate} could not have been related to the presence of *P. coloratum* because the largest effects occurred when the plants were relatively small. This does argue that whatever effect *P. coloratum* did have on soil N early in the experiment, it was probably not related to the provision of root-derived C. Assuming a root dry weight of 30 mg per pot at 14 d (extrapolating back from the measurements for 21 d in Fig. 1), a root [C] of 40% and that 10% of root C was transferred into the soil, that C transfer would amount to ca. 0.1 mmol. About 2 mol C are needed to reduce 1 mol NO$_3^-$. So, root-derived C could have reduced ca. 0.05 mmol NO$_3^-$ by 14 d. This is equivalent to a daily, plant-induced denitrification rate of only <0.11 kg ha$^{-1}$. (This is an under-estimate. It would have been slightly larger had exponential growth of the root system and cumulative inputs of root-derived C into the soil been assumed). The δ_{nitrate} data are consistent with much faster denitrification rates of >5 kg ha$^{-1}$ d$^{-1}$ (see above). Even if specific rates of plant-to-soil C transfer were increased by elevated atmospheric [CO$_2$] (and there is little evidence that this happens: see Darrah, 1996), changes in δ_{nitrate} were unlikely to have been caused primarily by the provision of C from roots. Nor was the effect on δ_{nitrate} likely to have been caused by a stimulation by root-derived C of microbial respiration in general. Aerobic respiration consumes approximately equimolar amounts of C and O$_2$. Root-derived C could have driven the consumption of only ca. 0.1 nmol of O$_2$ up to 14 d. This is $<1\%$ of the O$_2$ in the soil's pore volume (assuming a gas-filled porosity of 0.2), and so would have had a negligible influence on soil [O$_2$].

The only other possible influence of plants on denitrification was that on soil [O$_2$], through increased root respiration (O$_2$ consumption), decreased water uptake (diffusive impedance), or both. How likely were these effects early in our experiment? The effect of elevated [CO$_2$] on the growth of *P. coloratum* root systems was not apparent at the first two harvests (Fig. 1). Therefore, we would not expect roots of plants grown in elevated [CO$_2$] to have consumed much more O$_2$ per pot early in the experiment. Nor is there any evidence that elevated [CO$_2$] alters specific rates of root respiration (Lambers et al., 1996). Unfortunately, we do not have reliable data for water use by *P. coloratum* during (what turned out to be) the critical period between emergence (3 d) and the first harvest (21 d). We cannot say whether the treatments influenced *P. coloratum*’s water use during that period. However, there is evidence that water use by even small seedlings of C$_4$ species is significantly decreased by elevated atmospheric [CO$_2$]. For example, when Samarakoon and Gifford (1996) grew *Zea mays* (maize) at an atmospheric [CO$_2$] of 717 μmol mol$^{-1}$, its water use was restricted to 60–80% of that at 362 μmol mol$^{-1}$. That effect was apparent after only 12 d growth in irrigated or non-irrigated soil and would have established different soil wetnesses, especially in the topsoil where roots would have been most concentrated. It is possible, therefore, that a restricted use of water by *P. coloratum* under elevated atmospheric [CO$_2$] produced soil moisture conditions conducive to denitrification before 21 d. Because NO$_3^-$ was plentiful in the soil at the start of the experiment, it is then that large amounts of denitrification were most likely, other things being equal.

Two pieces of recent, independent evidence, obtained using different techniques and materials, corroborate our argument for a positive, plant-mediated effect of elevated atmospheric [CO$_2$] on denitrification. First, Ineson et al. (1998) measured fluxes of N$_2$O from beneath a *Lolium perenne* (perennial ryegrass) sward grown in ambient or elevated [CO$_2$]. The N$_2$O flux was 27% greater at an atmospheric [CO$_2$] of 600 μmol mol$^{-1}$ compared with that at 350 μmol mol$^{-1}$. This effect was attributed to the provision of extra root-derived C under elevated [CO$_2$] (although Ineson et al. (1998) presented no arguments to substantiate that possibility or to eliminate others). Second, Arrone and Bohlen (1998) measured doubled fluxes of N$_2$O from intact
grassland monoliths exposed to elevated [CO₂]. They attributed this specifically to an effect on soil wetness mediated by plants’ responses to [CO₂]. Elevated atmospheric [CO₂] will not always stimulate denitrification. In contrast to the results discussed above, Hungate et al. (1997c) found no effect of elevated [CO₂] on short-term (<9 d) denitrification rate in a Californian grassland. Cause-and-effect associations between elevated [CO₂] and denitrification may well be site-dependent.

4.2. Nitrification

Nitrification — an aerobic process — is depressed by hypoxia, and inhibited by anoxia. Nitrification rates are usually zero in waterlogged soil, but some production of NO₃⁻ may occur in oxic sites within otherwise wet soil (Patrick, 1982). It is also depressed in very dry soil (Schmidt, 1982) and by the presence of plants (Wheatley et al., 1990, 1997; Verhagen et al., 1994). Nitrification, like denitrification, produces N₂O, but by a different biochemical pathway. NO₃⁻ produced by nitrification may be depleted in ¹⁵N compared with NH₄⁺ from which it originated (see Yoneyama, 1996). However, NH₄⁺ produced during mineralisation may be ¹⁵N-enriched compared with the organic N from which it originated (Shi et al., 1992). (A qualification must be added. It is that all published ¹⁵N data for soil inorganic N are potentially in error. We note, first, that addition of NO₃⁻ fertiliser with a δ¹⁵N value of −1.1‰ resulted, 3 weeks later, in the soil’s δ nitrate becoming slightly more negative than this (−2.4‰). This does not suggest that, in this soil, nitrification produced NO₃⁻ more enriched in ¹⁵N compared with the soil’s total N (+6.7‰). Had it done, δ nitrate should have become more positive than the δ¹⁵N value of the fertiliser.

Second, suppose that the increase in δ nitrate in planted soil between 0 and 21 d was caused by ¹⁵N-enriched NO₃⁻ derived from nitrification mixing with fertiliser NO₃⁻. How much NO₃⁻ must have been produced by nitrifiers to cause a change in δ nitrate from −2.4‰ to +10‰? This can be estimated from an isotopic mass balance. Suppose that NO₃⁻ produced by nitrification had a δ¹⁵N value of +20‰ (i.e., some 13.3‰ more enriched than the soil’s total N) and that x g were produced per pot between 0 and 21 d. This would have mixed with existing NO₃⁻ in the soil (1.2 g of NO₃⁻N per pot with a δ¹⁵N value of −2.4‰). The isotopic mass balance is:

\[
10 = \frac{-(2.4 \times 1.2) + (20 \times x)}{1.2 + x}
\]

from which a value of x = 1.5 g NO₃⁻N can be calculated. This is equivalent to a NO₃⁻N production rate per unit dry soil of c. 13 mg kg⁻¹ d⁻¹, over twice as fast as the maximum rate quoted by Haynes (1986) for a variety of soil types. It would be even greater assuming a less generous (i.e., less positive) δ¹⁵N value for NO₃⁻ produced by nitrification.

Third, by 0 d, each pot contained only 1.2 g of NO₃⁻N even though 3.1 g had been added as fertiliser 3 weeks before. This implies net immobilisation of NO₃⁻, rather than a net production. Although unusual in a soil with a C-to-N ratio <20, that is, nevertheless, what our analyses suggest. They do not suggest denitrification in that period, because, again, δ nitrate should have become more ¹⁵N-enriched. This did not happen until later (see above).

Fourth, there was no significant change in [NO₃⁻] in unplanted soil, irrespective of watering frequency or atmospheric [CO₂]. Given that nitrification tends to be inhibited by the presence of plants, we would not expect nitrification to have been any greater in the planted soil nor to vary significantly with [CO₂].

Fifth, the relation between [NO₃⁻]⁻¹ and δ nitrate was not that expected when isotopically distinct NO₃⁻ sources mix (Mariotti et al., 1988). If nitrification had been significant, changes in δ nitrate would have approximated a mixing model more than a fractionation model. There would then have been a linear relation between [NO₃⁻]⁻¹ and δ nitrate, not curved, as in Fig. 3 (inset). We conclude that nitrification was an unlikely explanation for the data in Fig. 3.

4.3. Plant N uptake and assimilation

The uptake of NO₃⁻ by roots cannot explain the increase in δ nitrate. There is no experimental evidence for, nor any theoretical reason to expect, the transport of NO₃⁻ across membranes (as during uptake from the soil solution, for example) to cause ¹⁵N/¹⁴N fractionations (Handley and Raven, 1992). In contrast, N assimilation can cause fractionations of ¹⁵N/¹⁴N with ε values up to +17‰ (Mariotti et al., 1982b). Theoretically, at least, this and the internal mixing of plant N, can cause any NO₃⁻ which is effluxed from roots being more ¹⁵N-enriched than the NO₃⁻ originally assimilated, although this depends on many factors (Robinson et al., 1998). Once in the soil, this effluxed N could then mix with less-¹⁵N-enriched NO₃⁻, so increasing the net δ nitrate. As we saw with Eq. (4), an input per pot of 1.5 g NO₃⁻N with a δ¹⁵N as large as +20‰ would have been required to cause
the observed shift in δnitrate. This is over five times as much N as was present in the largest P. coloratum plants at the final harvest (data not shown). Robinson et al.’s (1998) calculations imply that ca. 1% of assimilated NO3− being effluxed is more likely. For P. coloratum harvested at the end of our experiment, this would have amounted to only 1.8 mg NO3-N per pot.

4.4. NH3 volatilisation

Because of the large potential discrimination (+34‰) against 15N in NH4+ when NH4+ → NH3, residual NH4+ may become 15N-enriched if NH3 volatilisation occurs. Should any of that 15N-enriched NH4+ then be nitrified, the resulting NO3− would also be enriched. NH3 volatilisation from soil was an unlikely explanation for the observed changes in δnitrate for three reasons. First, little NH4+ was measured in soil extracts. Second, had any NH4+ been present in the soil whose pH was 6.5, only 0.2% of it would have been in the NH3 form at equilibrium (Freney et al., 1981). Third, even assuming ε = +34‰, an isotope mass balance estimates that ca. 10–40% of the NO3− present initially in the soil would have had to be volatilised (having first been immobilised and re-mineralised as NH4+) to account for the change in δnitrate. These are unreasonably large fractions.

Volatilisation of N (as NH3, amines, NO3, or HCN; Wetselaar and Farquhar, 1980) from leaves can also be discounted. Most volatile N losses from plants occur via stomata. Under elevated [CO2], stomatal conductances of C4 Panicum species are smaller than when under ambient [CO2] (Ghannoum et al., 1997). We should, therefore, expect a smaller 15N enrichment in plants grown under elevated [CO2] if they had lost N volatiles through their stomata, compared with plants grown in ambient [CO2]. This did not happen. Plants grown at 1000 µl l−1 were no less enriched in 15N than those grown at 350 µl l−1 (data not shown). Moreover, to achieve the required isotopic mass balance, unrealistically large amounts of N would need to be volatilised, as much N as was measured in whole plants at the end of the experiment, even if ε was assumed to be +34‰. Bergersen et al. (1988), who also observed 15N-enrichments in the rooting medium, detected no volatile N emissions from their Glycine max (soybean) plants.

4.5. NO3− leaching

Another potential route of N loss was leaching. Leaching per se does not discriminate against 15N. It could not have caused the observed increase in δ15N of residual NO3−. The occurrence of 15N-enriched NO3− several metres below the surface of soil through which NO3− is being leached has been attributed to denitrification at those depths (Herbel and Spalding, 1993), rather than to any preferential retention in soil of 14NO3−.

5. Conclusions

The balance of evidence favours denitrification, and none of the alternative processes, as the most likely explanation for the changes in δnitrate in planted soil. Elevated atmospheric [CO2] reduced the water use by P. coloratum seedlings. This left soil wetter between irrigations. If the soil’s [O2] then became more depleted in the wetter soils, the large amounts of NO3− present would have been subject to denitrification, leading to the observed increase in δnitrate. The provision of more root-derived C as microbial substrates under elevated atmospheric [CO2] was probably small.

If atmospheric [CO2] influences soil [O2] in this way, a positive, plant-mediated effect of [CO2] on the soil-to-atmosphere flux of N2O derived from denitrification (but not nitrification) is possible. Should that flux be significant at a global scale, the resulting absorption of infra-red radiation by atmospheric N2O could exacerbate the enhanced greenhouse effect. As the latter is a product of, among other things, elevated atmospheric [CO2], there is an opportunity for a positive, plant-mediated feedback to occur. This possibility requires explicit testing.

Acknowledgements

D.R. was the recipient of a University of Western Sydney Visiting Research Fellowship and received other financial support from the Scottish Crop Research Institute, the British Council and Sarah Lindley. Farouque, Oula Ghannoum, Suzette Matestic, John Mazlin, Mizan, Leonie Noakes, Karuppan Sakadevan, Saman Reneewera, Jim Sheehy, Regina Wiek, Sigrun Holdhus, Winnie Stein, Lisa Vettraino and Jane Wishart helped with various aspects of the experimental work. Ken Giller, Linda Handley, David Hopkins, John Raven, Charlie Scrimgeour, Keith Smith, Margret van Vuuren, Ron Wheatley and several anonymous referees commented on early drafts of the paper. Jay Arnone discussed his data before publication. Thanks are due to all. The S.C.R.I. receives grant-in-aid from the Scottish Office Agriculture, Environment and Fisheries Department.
References

and plant roots in soil in pots; effects of grazing by flagellates and fertilization. Soil Biology & Biochemistry 26, 89–96.
