Contents

Course Summary
Course Aims & Learning Outcomes
Course Teaching Staff
Assessments & Examinations
Class Representatives
Problems with Coursework
Course Reading List
Lecture Synopsis
Practical/Lab/Tutorial Work
Medical Sciences Common Grading Scale
Course Timetable

Cover image:

Confocal micrograph of fluorescently labelled HeLa cells.
Nuclei are labelled in blue, tubulin in green and actin fibres in red.

Courtesy of:
Kevin Mackenzie
Microscopy and Histology Core Facility
Institute of Medical Sciences
University of Aberdeen
http://www.abdn.ac.uk/ims/microscopy-histology
Course Summary
This course considers the development of the nervous system and examples of functional networks. Areas discussed: 1) The initial establishment of the nervous system in the embryo and subsequent neuron growth. 2) Development of the eye and functional eye-brain networks. 3) Synaptogenesis, development of the neuromuscular junction and pain pathways. Topics incorporate aspects of stem cell function, nerve and muscle function and examples of disease states, including anatomical dissection of the nervous system. The course consists of 4 lectures per week and is examined by continuous assessment of a group presentation topic (group and individual elements), an elective anatomy dissection (dissection performance and an essay), and a 2-hour written exam.

Course Aims & Learning Outcomes
To use the basics of central and peripheral nervous system function covered in Years 2 and 3, to consider how these systems become established from undifferentiated cells. Students will learn how nerves grow, how they move, how they transport materials over long distances, how nerves communicate, what signals regulate these activities and how the nervous system generates specific functions (e.g., vision, muscle contraction, pain). Through the elective dissection, students will identify the tissue associations nerves have as they are distributed through the body.

Course Teaching Staff
Course Co-ordinator(s):
Course Organiser: Dr Ann M. Rajnicek (ext (43)7514) a.m.rajnicek@abdn.ac.uk
Anatomy organiser: Dr Prem Ballal (ext (27)4325) p.ballal@abdn.ac.uk

Other Staff:
Dr Guy S Bewick (GSB)
Prof Martin Collinson (MC)
Prof Lynda Erskine (LE)
Dr Wenlong Huang (WH)
Prof Stephen N Davies (SND)
Prof Colin D McCaig (CDM)
Dr Giuseppe D’agostino (GD)
Assessments & Examinations

The dissection exercise and short essay contribute 15% to the overall mark for AN4301. (Note: This element is in lieu of the in-course essay done by students in PY4302).

Individual elective dissection & Dissection Essay – 15%

Guidance for the layout, content and assessment of the essay will be given during the course. It should be 1000-1200 words in length. Further details will be handed out by Dr Ballal. Submission date: as indicated in the course timetable.

Overall Course Assessment

a). Continuous assessment - 15% of the course total will be based on the elective dissection

- 7.5% elective dissection See MyAberdeen for descriptors for dissection marks.
- 7.5% the dissection essay associated with the dissection.

b). Group Presentation – 15% of the total course assessment. See MyAberdeen for details.

- 2.5% Peer assessment of your participation
- 2.5% Mark for group’s presentation
- 10% Individual written summary (limit-500 words)

c). Examination 70% of the assessment for AN4301 DEVELOPMENTAL NEUROSCIENCE (WITH ANATOMY). This will take place in the summer diet, April/May. It will take the form of an essay-based examination. It is likely to be a 2-hour exam in which 2 essays are attempted from a choice of at least 6. All assessments (continuous and examined) will be made using the University Common Grading Scale (copy attached).

Class Representatives

We value students’ opinions in regard to enhancing the quality of teaching and its delivery; therefore, in conjunction with the Students’ Association we support the Class Representative system.

In the School of Medicine, Medical Sciences & Nutrition we operate a system of course representatives, who are elected from within each course. Any student registered within a course that wishes to represent a given group of students can stand for election as a class representative. You will be informed when the elections for class representative will take place.

What will it involve?
It will involve speaking to your fellow students about the course you represent. This can include any comments that they may have. You will attend a Staff-Student Liaison Committee
and you should represent the views and concerns of the students within this meeting. As a representative you will also be able to contribute to the agenda. You will then feedback to the students after this meeting with any actions that are being taken.

Training

Training for class representatives will be run by the Students Association. Training will take place within each half-session. For more information about the Class representative system visit www.ausa.org.uk or email the VP Education & Employability vped@abdn.ac.uk. Class representatives are also eligible to undertake the STAR (Students Taking Active Roles) Award with further information about this co-curricular award being available at: www.abdn.ac.uk/careers.

Problems with Coursework

If students have difficulties with any part of the course that they cannot cope with alone they should notify the course coordinator immediately. If the problem relates to the subject matter general advice would be to contact the member of staff who is teaching that part of the course. Students with registered disabilities should contact Mrs Jenna Reynolds (medsci@abdn.ac.uk) in the Medical Sciences Office (based in the Polwarth Building, Foresterhill), or Mrs Sheila Jones (s.jones@abdn.ac.uk) in the Old Aberdeen office associated with the teaching laboratories, to ensure that the appropriate facilities have been made available. Otherwise, you are strongly encouraged to contact any of the following as you see appropriate:

- Course student representatives
- Course co-ordinator
- Convenor of the Medical Sciences Staff/Student Liaison Committee (Prof Gordon McEwan)
- Personal Tutor
- Medical Sciences Disabilities Co-ordinator (Dr Derryck Shewan)

All staff are based at Foresterhill and we strongly encourage the use of email or telephone the Medical Sciences Office. You may have a wasted journey travelling to Foresterhill only to find staff unavailable.

If a course has been completed and students are no longer on campus (i.e. work from second semester during the summer vacation), coursework will be kept until the end of Freshers’ Week, during the new academic year. After that point, unclaimed student work will be securely destroyed.
Course Reading List
Reading lists for lecture content are incorporated in lecture slides on MyAberdeen.

Lecture Synopsis

PART 1: BUILDING THE CNS

Lectures 1 & 2: Nervous system induction – Dr Ann Rajnicek

The earliest stages of nervous system formation will be discussed. The lectures describe experimental evidence that the nervous system arises by a series of induction events and identify roles for specific inducing signals incorporating the experimental evidence.

Lecture 3: Neurogenesis/migration - Prof C.D. McCaig

Nerve cells are born in sites distant from those that they finally occupy. The locations and controls of neuronal differentiation will be considered together with the mechanisms controlling neuronal migration. The consequences of disrupting normal migration of neurones are also considered.

Lecture 4: Neuronal motility and axonal transport - Prof C.D. McCaig

How newborn neurons move to correct positions in the developing nervous system. How nerves transport materials intracellularly, axonal transport, the microstructure and function of the neuronal cytoskeleton. The postulated mechanisms controlling these events will be outlined.

Lecture 5: Electrical guidance cues - Dr Ann Rajnicek

The nervous system develops within a natural electric field generated by embryonic epithelia and the neural tube itself. The effects this has on neuronal cell behaviour, the underlying mechanisms and how it can be useful clinically will be discussed.

Lecture 6: Neurotrophic factors - Prof C.D. McCaig

Nerve growth factor and the other members of the neurotrophin family of secreted proteins will be discussed. Their mechanism of action, functional significance, and their roles in neuronal survival, development and regeneration will be considered.

PART 2: LINKING ANATOMY, DEVELOPMENT AND PHYSIOLOGY TO FUNCTION

Lecture 7: Retina development - Prof L. Erskine

This lecture investigates how the retina (a specialized outpost of the forebrain) develops from a single sheet of uniform precursors into a complex 3-dimensional arrangement of
differentiated, specialized neurons and glia, ready to transmit information to the visual centres of the brain.

Lecture 8: Wiring the eye to the brain - Prof L. Erskine

Visual information is transmitted from the eye to the brain via the axon of retinal ganglion cells. The cellular and molecular mechanisms controlling the formation of these connections will be discussed.

Lecture 9: Exocytosis: the basis of quantal neurotransmitter release - Dr G.S. Bewick

The process of exocytosis as the underlying mechanism of quantal transmitter release at synapses will be discussed, with particular reference to the NMJ. The lecture will also cover recent work, both on the NMJ and on other preparations, concerning the proteins and ion channels involved in exocytosis and their position within the nerve terminal.

Lecture 10: Endocytosis and vesicle recycling - Dr G.S. Bewick

Membrane lost from the vesicle pool during exocytosis is thought to be recaptured via endocytosis then repackaged with neurotransmitter, ready for re-release. This lecture will describe our current state of knowledge of these processes, including recent studies of vesicle recycling kinetics using tracers and the molecules involved in this process.

Lecture 11: Modulation of transmitter release - Dr G.S. Bewick

Neurotransmitter release can be modulated by a variety of factors. The effect of activity and naturally occurring modulators will be examined, together with the underlying presynaptic changes thought to bring these about.

Lecture 12: Modulation of transmitter release - Dr G.S. Bewick

Neurotransmitter release can be modulated by a variety of factors. The effect of activity and naturally occurring modulators will be examined, together with the underlying presynaptic changes thought to bring these about.

Lecture 13: Developing pain - Dr Wenlong Huang

Pain results from the detection of intense or noxious stimuli by specialized sensory neurons (nociceptors), a transfer of action potentials to the spinal cord and onward transmission of the warning signal to the brain. In this lecture, students will learn the development of these sensory neurons in mammals and how they function in pain processing.

Practical/Lab/Tutorial Work

Group Work
Note: This work is examinable as it is intended to reinforce concepts learned elsewhere in the course. As for standard lectures the presentations will be made available for revision purposes on MyAberdeen.

During the first week, the class will be divided into groups to research a topic and each group will make one 20-minute presentation with up to 10 minutes of further peer-led questions/discussion (SEE TIMETABLE). This exercise aims to promote confidence and self-directed research, so students are expected not to require direct participation by staff. However, a Tutor has been assigned to each group in case there are issues that cannot be resolved within the group or for help understanding key concepts.

Marked elements:

- The **GROUP PRESENTATIONS** contribute 2.5% to your course mark. This mark will be an audience assessment (including staff) and will be awarded to the group as a whole.
- Each student will assess the contribution made by each other member of their group, and this **PEER ASSESSMENT** will contribute a further 2.5%. This incorporates attendance (at group meetings/practice sessions and the final presentation) as well as co-operation and successful completion of tasks agreed within the group.
- Each student is required to prepare a **WRITTEN SUMMARY** of their Group topic (see MyAberdeen for details) (SEE TIMETABLE FOR DEADLINE). The written 500-word summary contributes 10% of your course mark.

Therefore, the group presentation aspect contributes 15% toward the final mark (2.5% peer assessment + 2.5% actual presentation + 10% for individual summary).

A list of Presentation Topics, Starter References, and guidelines will be made available on MyAberdeen.

Group meetings. The first Group meeting is timetabled in the 1st week of the course. At the first meeting each group should divide itself into subgroups, each taking responsibility for researching one aspect of the topic. Decide amongst yourselves how the presentation will be made and who will cover each part. You will have to work together and discuss each other's findings. A successful presentation should make a coherent story without repetition/overlap in the presentation as a whole. Groups are encouraged to meet as often as is agreed. Groups presenting on the same day are presenting related topics, so you are encouraged to discuss potential overlap with the other group to avoid excessive repetition.

Written summary:

Contributes 10% toward your continuous assessment

- To be prepared as an individual but incorporating information from other group members. Share information and work cooperatively at the early stages.
- Think Abstract- snappy and to the point. No waffle, no bullet points.
- It should represent the content of the *entire* group topic, not just the part you were assigned to research.
• **Strict** 500-word limit - include the word count at the end of the summary paragraph
• Figures are permitted, but they must be referred to in the text and each needs a brief figure legend. This will eat into your word count. So, use them very carefully.
• Include key references in the same way as if you were writing a very short essay. The reference citations in the text and the reference list are *not included in the word count*. But they should be very few, identifying that you can identify the key references. These may include relevant papers not in the original starter references provided.

Treat these topics as you would other lecture material. Students in non-presenting groups will be expected to contribute by asking questions after the presentation. Attendance will be taken.

Elective individual dissection (7.5% of final mark)

Prior to commencing this course, you will have considered your elective dissection. The choice is yours but should be focused around one particular anatomical area or functional activity associated with the nervous system e.g., origin, course and distribution of a division of the trigeminal nerve / origin, course and distribution of median nerve in the hand. (NB the origin course and distribution of the entire trigeminal nerve or the entire median nerve would be considered too extensive a task for the time available)

You are strongly encouraged to discuss your choices with the anatomy organiser (Dr Ballal) and you should bear the following in mind:

• The topic will have to be approved by the course co-ordinator (this will largely be to ensure the choice is not over adventurous, or not adventurous enough)
• The availability of cadaveric material may impose limitations on topics.
• The topic for this elective dissection is also the topic for the essay.

You are required to submit a 300-word description of your proposed elective dissection, for approval. This must be done before you start this dissection (you will not be provided with the material unless this statement is provided) and at the latest by the end of Week 1 of the course.

An optional (at the individual student’s discretion) 300-word statement may be provided for the assessors after the dissection is completed to explain any variation from the original plan e.g. due to presence of unpredicted anomaly/prosthesis in cadaveric tissue.

Your dissection will be judged on its quality – that includes the dissection being free from cuts/tears etc and with all relevant structures cleaned of unnecessary fascia. Marks will also be awarded on its overall appearance and presentation e.g. neat cut edges to the skin margins etc See the descriptors on MyAberdeen specific for the dissection.

You are required to attend for four x 3-hour dissection sessions. Emphasis should be on care and precision. (If you do not finish the task within the allotted session you can continue after the timetabled time, subject to staff availability for supervision.)
Note: in these dissection sessions you are responsible for clearing your work area which includes the removal and proper disposal of any sharps, the cleaning of instruments and their return to the instrument wrap, the spraying and covering of your specimen. Failure to properly tidy up will result in the loss of marks. Leaving unprotected sharps in your work area may result in you being denied continued access to the dissection activity with consequent severe loss of marks.

Preparation of essay relating to individual dissection (7.5% of final mark)

Essay DEADLINE: SEE TIMETABLE

You are required to prepare an essay illustrating the preparation of your elective dissection and how it relates to previously reported findings in the literature. Guidance will be given on your specific essay topic, depending upon what it is that you actually dissect in the class. Essay guidelines on format etc. will be given out in class, however, it should be 1000-1200 words in length. You should use some of the images that you collect during your dissection to illustrate you essay, and you MUST cite peer-reviewed references at appropriate places in the text to support your statements and show a wider appreciation of the background literature.

You are expected to incorporate photographic illustrations of your work as it progressed. This should include a photograph of the cadaveric part before commencement of any dissection activity and also a labelled photograph of the final completed dissection. Great care should be taken to ensure that this latter illustration is correctly framed and taken from an angle which best displays the end product (more than one photograph may be required)

Warning: Under the Anatomy Act 1984 as amended by The Human Tissue (Scotland) Act 2006 you are not allowed to take photographs of donated cadaveric material for wider dissemination without the written permission of the donor.

Please note that none of the material we hold in the department at the present time has that permission and therefore any public dissemination of illustrations of cadaveric material is a breach of the Act ie a criminal offence.

In practice this means that all photographs will be taken using the department’s digital camera and images will be downloaded onto the departmental graphics computer under the guidance and control of Mr Ian Brown (Technician). Any labelling of this material must be done on this computer (it is loaded with Adobe Photoshop) and copies of images must not be downloaded, either onto disc or by emailing to yourself or a third party. Furthermore, the illustrations should include no identifiable features e.g. face, odd scars, tattoos, etc which could allow the source of the material to be identified. The ID tag should be tucked out of view or turned over so as not to show the number

As already stated, any breach of the above is a criminal offence and, in addition, will be reported to the University as a breach of discipline.

In order for everyone to comply with the above it will be necessary to complete this part of the work in good time. You should therefore aim to prepare your illustrations as you go along.
University Policies

Students are asked to make themselves familiar with the information on key institutional policies which have been made available within MyAberdeen (https://abdn.blackboard.com/bbcswebdav/institution/Policies). These policies are relevant to all students and will be useful to you throughout your studies. They contain important information and address issues such as what to do if you are absent, how to raise an appeal or a complaint and indicate how seriously the University takes your feedback.

These institutional policies should be read in conjunction with this programme and/or course handbook, in which School and College specific policies are detailed. Further information can be found on the University’s Infohub webpage or by visiting the Infohub.

The information included in the institutional area for 2019/20 includes the following:

- Absence
- Appeals & Complaints
- Student Discipline
- Class Certificates
- MyAberdeen
- Originality Checking
- Feedback
- Communication
- Graduate Attributes
- The Co-Curriculum
<table>
<thead>
<tr>
<th>Grade</th>
<th>Grade Point</th>
<th>Category</th>
<th>Honours Class</th>
<th>Description</th>
</tr>
</thead>
</table>
| A1 | 22 | Excellent | First | • Outstanding ability and critical thought
• Evidence of extensive reading
• Superior understanding
• The best performance that can be expected from a student at this level |
| A2 | 21 | | | |
| A3 | 20 | | | |
| A4 | 19 | | | |
| A5 | 18 | | | |
| B1 | 17 | Very Good | Upper Second | • Able to argue logically and organise answers well
• Shows a thorough grasp of concepts
• Good use of examples to illustrate points and justify arguments
• Evidence of reading and wide appreciation of subject |
| B2 | 16 | | Lower Second | |
| B3 | 15 | | | |
| C1 | 14 | Good | Lower Second | • Repetition of lecture notes without evidence of further appreciation of subject
• Lacking illustrative examples and originality
• Basic level of understanding |
| C2 | 13 | | | |
| C3 | 12 | | | |
| D1 | 11 | Pass | Third | • Limited ability to argue logically and organise answers
• Failure to develop or illustrate points
• The minimum level of performance required for a student to be awarded a pass |
| D2 | 10 | | | |
| D3 | 9 | | | |
| E1 | 8 | Fail | Fail | • Weak presentation
• Tendency to irrelevance
• Some attempt at an answer but seriously lacking in content and/or ability to organise thoughts |
| E2 | 7 | | | |
| E3 | 6 | | | |
| F1 | 5 | Clear Fail | Not used for Honours | • Contains major errors or misconceptions
• Poor presentation |
<p>| F2 | 4 | | | |
| F3 | 3 | | | |
| G1 | 2 | Clear Fail/ Abysmal | | • Token or no submission |
| G2 | 1 | | | |
| G3 | 0 | | | |</p>
<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Place</th>
<th>Subject</th>
<th>Session</th>
<th>Staff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon 21 Oct</td>
<td>11:00-12:00</td>
<td>LT3</td>
<td>Nervous system induction 1</td>
<td>Lecture</td>
<td>AMR</td>
</tr>
<tr>
<td>Tue 22 Oct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wed 23 Oct</td>
<td>11:00-12:00</td>
<td>LT3</td>
<td>Nervous system induction 2</td>
<td>Lecture</td>
<td>AMR</td>
</tr>
<tr>
<td>Thu 24 Oct</td>
<td>11:00-12:00</td>
<td>TBA by each group</td>
<td>1st Group Presentation meeting</td>
<td>Group</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14:00-17:00</td>
<td>Anatomy DR, Suttie Building, FH</td>
<td>Dissection 1</td>
<td>Practical</td>
<td>PB</td>
</tr>
<tr>
<td>Fri 25 Oct</td>
<td>11:00-12:00</td>
<td>LT3</td>
<td>Neurogenesis/Migration</td>
<td>Lecture</td>
<td>CDM</td>
</tr>
<tr>
<td>Week 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon 28 Oct</td>
<td>11:00-1200</td>
<td>LT3</td>
<td>Neuronal Motility</td>
<td>Lecture</td>
<td>CDM</td>
</tr>
<tr>
<td>Tue 29 Oct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wed 30 Oct</td>
<td>11:00-1200</td>
<td>LT3</td>
<td>Electrical guidance</td>
<td>Lecture</td>
<td>AMR</td>
</tr>
<tr>
<td>Thu 31 Oct</td>
<td>11:00-1200</td>
<td>LT3</td>
<td>Neurotrophic factors</td>
<td>Lecture</td>
<td>CDM</td>
</tr>
<tr>
<td></td>
<td>14:00-17:00</td>
<td>Anatomy DR, Suttie Building, FH</td>
<td>Dissection 2</td>
<td>Practical</td>
<td>PB</td>
</tr>
<tr>
<td>Fri 1 Nov</td>
<td>11:00-1200</td>
<td>LT3</td>
<td>Retina Development</td>
<td>Lecture</td>
<td>LE</td>
</tr>
<tr>
<td>Week 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon 4 Nov</td>
<td>11:00-1200</td>
<td>LT3</td>
<td>Wiring eye to brain</td>
<td>Lecture</td>
<td>LE</td>
</tr>
<tr>
<td>Tue 5 Nov</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wed 6 Nov</td>
<td>11:00-1200</td>
<td>LT3</td>
<td>Exocytosis: quantal neurotransmitter release</td>
<td>Lecture</td>
<td>GSB</td>
</tr>
<tr>
<td>Thu 7 Nov</td>
<td>11:00-1200</td>
<td>TBA by each group</td>
<td>Group Presentation Final Practice</td>
<td>Group</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14:00-17:00</td>
<td>Anatomy DR, Suttie Building, FH</td>
<td>Dissection 3</td>
<td>Practical</td>
<td>PB</td>
</tr>
<tr>
<td>Fri 8 Nov</td>
<td>11:00-1200</td>
<td>LT3</td>
<td>Presentations by Groups 1 & 2</td>
<td>Presentations</td>
<td>AMR/GSB</td>
</tr>
<tr>
<td>Week 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon 11 Nov</td>
<td>11:00-1200</td>
<td>LT3</td>
<td>Presentations by Groups 3 & 4</td>
<td>Presentations</td>
<td>SND/GSB</td>
</tr>
<tr>
<td>Tue 12 Nov</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wed 13 Nov</td>
<td>11:00-1200</td>
<td>LT3</td>
<td>Presentations by Groups 5 & 6</td>
<td>Presentations</td>
<td>GSB/TBD</td>
</tr>
<tr>
<td>Thu 14 Nov</td>
<td>11:00-1200</td>
<td>LT3</td>
<td>Presentation by Groups 7 & 8</td>
<td>Presentations</td>
<td>CDM/WH</td>
</tr>
<tr>
<td></td>
<td>14:00-17:00</td>
<td>Anatomy DR, Suttie Building, FH</td>
<td>Dissection 4</td>
<td>Practical</td>
<td>PB</td>
</tr>
<tr>
<td>Fri 15 Nov</td>
<td>11:00-1200</td>
<td>LT3</td>
<td>Presentation by Groups 9 & 10</td>
<td>Presentations</td>
<td>MC/AMR</td>
</tr>
<tr>
<td>All groups submit Written summaries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon 18 Nov</td>
<td>11:00-1200</td>
<td>LT3</td>
<td>Endocytosis and vesicle recycling</td>
<td>Lecture</td>
<td>GSB</td>
</tr>
<tr>
<td>Tue 19 Nov</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wed 20 Nov</td>
<td>11:00-1200</td>
<td>LT3</td>
<td>Modulating neurotransmitter release</td>
<td>Lecture</td>
<td>GSB</td>
</tr>
<tr>
<td>Thu 21 Nov</td>
<td>11:00-1200</td>
<td>LT3</td>
<td>Genetic control of nervous function</td>
<td>Lecture</td>
<td>AGS</td>
</tr>
<tr>
<td>Fri 22 Nov</td>
<td>11:00-1200</td>
<td>LT3</td>
<td>Developing Pain</td>
<td>Lecture</td>
<td>WH</td>
</tr>
<tr>
<td>Week 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon 25 Nov</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tue 26 Nov</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wed 27 Nov</td>
<td>11:00-1200</td>
<td>LT3</td>
<td>Essay Preparation</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Thu 28 Nov</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fri 29 Nov</td>
<td>17:00</td>
<td></td>
<td>Deadline: Dissection Essay</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Week 18 - No teaching during this week REVISION WEEK
<table>
<thead>
<tr>
<th>Staff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Guy S Bewick (GSB)</td>
</tr>
<tr>
<td>Dr Prem Ballal (PB) (Dissection Organiser)</td>
</tr>
<tr>
<td>Prof Martin Collinson (MC)</td>
</tr>
<tr>
<td>Prof Lynda Erskine (LE)</td>
</tr>
<tr>
<td>Prof Stephen N Davies (SND)</td>
</tr>
<tr>
<td>Prof Colin D McCaig (CDM)</td>
</tr>
<tr>
<td>Dr Antonio Gonzalez Sanchez (AGS)</td>
</tr>
<tr>
<td>Dr Wenlong Huang (WH)</td>
</tr>
<tr>
<td>Dr Ann M Rajnicek (AMR), (Course Co-ordinator)</td>
</tr>
</tbody>
</table>