Talk and Publication Launch
Friday 24th May, 5.00pm – 6.00pm

The Suttie Arts Space, Aberdeen Royal Infirmary, Foresterhill

Come and join us for a talk and the launch of the publication to accompany Beverley Hood’s commission.

The talk will be led by Dr Silvia Casini, lecturer in Film and Visual Culture at the University of Aberdeen. Guest speakers will include:

Dr Leeanne Bodkin
Beverley Hood
Professor David J Lurie

This talk is part of this year’s MayFest programme.

Immobile Choreography

Beverley Hood

20th April – 16th June 2019
Exhibition Information

Immobile Choreography is an artwork commissioned by Grampian Hospitals Art Trust in partnership with University of Aberdeen’s Biomedical Physics department, to mark IDentiFY, a pioneering research project developing Fast Field-Cycling MRI (FFC-MRI), a new magnetic resonance imaging (MRI) technique.

During the MRI/FFC-MRI scanning process the subject is required to remain as still as possible, wearing an MRI coil (head, breast, knee, etc). However, being immobile does not mean that we are empty of potential, imagination or in fact actual movement on a molecular level (which the FFC-MRI is influencing and aligning). The Immobile Choreography installation materialises the scanned body as a digital performer, transformed from the medical to poetic. The otherworldly performer acts out choreographed movement, imaginatively attuned to the parameters of the FFC-MRI scanner process and apparatus.

With thanks to Freya Jeffs (dancer), Rebecca Milling (filming), Lionel Broche (lighting),

Artist Biography

Beverley Hood is an Edinburgh based artist. Since the mid 1990’s she has interrogated the impact of technology on the body, relationships and human experience through the creation of digital media, performance arts projects, and writing. She has worked collaboratively on numerous occasions, developing projects involving a range of practitioners, including medical researchers, scientists, writers, technologists, dancers, actors and composers.

IDentiFY

The University of Aberdeen is leading a research project to develop a new kind of medical scanner, Fast Field-Cycling Magnetic Resonance Imaging (FFC-MRI). As in standard MRI (found in tens of thousands of hospitals worldwide), FFC-MRI uses magnetic fields and radiowaves to produce images of the inside of a patient’s head or body. FFC-MRI generates extra information by switching the strength of its magnet during a scan, and it is hoped that this can help doctors diagnose disease more reliably.

IDentiFY, funded by the European Commission, is aimed at developing FFC-MRI and bringing it closer to use in hospitals. The Aberdeen team has built a prototype scanner and is already using it to image patients who have suffered from a stroke.