
FRSE
Chair in Human Nutrition
- About
-
Biography
Professor Heisler investigates brain circuits regulating energy homeostasis in an effort to identify new targets amenable to obesity and type 2 diabetes medications. Professor Heisler received her PhD from Tufts University, USA in 1997 and held postdoctoral positions at the University of California, San Francisco USA from 1997-99 and Beth Israel Deaconess Medical Center, Harvard Medical School (HMS) USA from 1999-2001. In 2001, Professor Heisler was promoted to Instructor and set up her laboratory at HMS. She then relocated her group to the University of Cambridge, UK in 2004 where they worked until 2013. In 2013, the Heisler group moved to the Rowett Institute to take advantage of the Institute’s strengths in obesity research, ranging from molecules to man.
News
The MOOMIN (Mechanisms Of Obesity, Metabolism, Insulin Sensitivity and Nutrition) Lab welcomes new PhD student Dhamyaa Al-Halboosi!
Memberships and Affiliations
- Internal Memberships
-
Obesity and Food Choice Theme Lead
- External Memberships
-
Deputy Editor, Molecular Metabolism
SAB, Keysone Symposia
Prizes and Awards
Professor Heisler was the recipient of the 2018 Outstanding Scientific Achievement Award (OSAA) from the American Diabetes Association. Professor Heisler received the OSAA prize for her research identifying a new type of medication to improve type 2 diabetes. This prestigious award recognises research in diabetes that demonstrates particular independence of thought and originality. Her career scientific contributions include seminal discoveries in the brain control of appetite and blood sugar that demonstrate her innovation.
Professor Heisler commented: “Diabetes is such a widespread problem and it is crucial that we as scientists continue to research this disease in order to find new ways to combat it. It is extremely humbling to be recognised for our contribution to diabetes research. I work alongside many talented colleagues."
- Research
-
Research Overview
Moomin Lab
Mechanisms Of Obesity, Metabolism, Insulin Senstivity and Nutrition
The brain represents the master coordinator of appetite and energy expenditure, employing interwoven neurological circuits to continually appraise and respond to changes in energy state.Our research aims to discover and characterise these brain circuits using cutting edge technology with the objective of locating points within the pathway that are amenable to manipulation with manmade (drug) or natural (hormone) substances.
We also examine the impact of diet and body weight on circuit rewiring and mechanisms restore appropriate system connectivity and activity.
The ultimate aim of our research is to identify new treatments for obesity and type 2 diabetes.
Cells in the brain that impact appetite Our work identifying a new treatment
for type 2 diabetes is on the journal coverCurrent Research
Research team
- Dr Yuliia Martynova - Research fellow
- Dr Pablo Blanco Martinez de Morentin - Research fellow
- Mr Alasdair Leeson Payne - Research fellow
- Miss Raffaella Chianese - Research assistant
- Miss Dhamyaa Al-Halboosi - Research assistant
- Mr Matevz Arcon - PhD Student
Funding and Grants
BBSRC
Diabetes UK
Wellcome Trust
Medical Research Scotland
- Teaching
-
Teaching Responsibilities
Frontiers of Biomedical Science - SM3002
- Publications
-
Page 1 of 5 Results 1 to 10 of 45
Obesity medication lorcaserin activates brainstem GLP-1 neurons to reduce food intake and augments GLP-1 receptor agonist induced appetite suppression
Molecular Metabolism, vol. 68, 101665Contributions to Journals: ArticlesMolecular mechanisms of appetite control via 5-HT1B receptors
Proceedings of the Nutrition SocietyContributions to Journals: Articles- [ONLINE] DOI: https://doi.org/10.1017/s002966512200026x
5-HT recruits distinct neurocircuits to inhibit hunger-driven and non-hunger-driven feeding
Molecular Psychiatry, vol. 26 , no. 12, pp. 7211–7224Contributions to Journals: Articles- [ONLINE] DOI: https://doi.org/10.1038/s41380-021-01220-z
- [OPEN ACCESS] http://aura.abdn.ac.uk/bitstream/2164/18408/1/He_etal_MP_5_HT_Recruits_VoR.pdf
- [ONLINE] View publication in Scopus
Role of serotonin in body weight, insulin secretion and glycaemic control
Journal of Neuroendocrinology, vol. 33, no. 4, e12960Contributions to Journals: Review articles- [ONLINE] DOI: https://doi.org/10.1111/jne.12960
- [OPEN ACCESS] http://aura.abdn.ac.uk/bitstream/2164/16346/1/Georgescu_etal_role_of_serotonin_VOR.pdf
- [ONLINE] View publication in Scopus
Pharmacological evidence for transactivation within melatonin MT2 and serotonin 5‐HT2C receptor heteromers in mouse brain
The FASEB Journal, vol. 35, no. 1, e21161Contributions to Journals: Articles- [ONLINE] DOI: https://doi.org/10.1096/fj.202000305R
- [ONLINE] View publication in Scopus
Developmental programming of appetite and growth in male rats increases hypothalamic serotonin (5-HT)5A receptor expression and sensitivity
International Journal of Obesity, vol. 44, pp. 1946-1957Contributions to Journals: Articles- [ONLINE] DOI: https://doi.org/10.1038/s41366-020-0643-2
- [ONLINE] View publication in Scopus
Neurochemical characterization of brainstem Pro-opiomelanocortin cells
Endocrinology, vol. 161, no. 4, pp. 1-13Contributions to Journals: ArticlesMolecular reductions in glucokinase activity increase counter-regulatory responses to hypoglycemia in mice and humans with diabetes
Molecular Metabolism, vol. 17, pp. 17-27Contributions to Journals: Articles- [ONLINE] http://www.sciencedirect.com/science/article/pii/S2212877818307506
- [ONLINE] DOI: https://doi.org/10.1016/j.molmet.2018.08.001
- [OPEN ACCESS] http://aura.abdn.ac.uk/bitstream/2164/11381/1/Molecular_reductions_in_glucokinase_activity_increase_counter_regulatory_responses_to_hypoglycemia_in_mice_and_humans_with_diabetes.pdf
Nucleus of the Solitary Tract Serotonin 5-HT2C Receptors Modulate Food Intake
Cell Metabolism, vol. 28, no. 4, pp. 619-630.e5Contributions to Journals: ArticlesSpecific Subpopulations of Hypothalamic Leptin Receptor-Expressing Neurons Mediate the Effects of Early Developmental Leptin Receptor Deletion on Energy Balance
Molecular Metabolism, vol. 14, pp. 130-138Contributions to Journals: Articles