DEGREE OF BACHELOR OF SCIENCE IN COMPUTING SCIENCE - MATHEMATICS (04GGMC70)

DESIGNATED DEGREE OF BACHELOR OF SCIENCE IN COMPUTING SCIENCE MATHEMATICS (04GGMC89)

Students must also comply with the University General Regulations and the Supplementary Regulations for the Degree of Bachelor of Science

All the courses listed below are prescribed for this degree

PROGRAMME YEAR 1 - 120 Credit Points						
First Half-Session	Second Half-Session Course Code		Course Title	Credit Points	Course Code	
PD 1002	Getting Started at the University of Aberdeen	0		Course Title	Credit Points	
CS 1032	Programming 1	15	CS 1533	Computer Systems and Architecture	15	
CS 1029	Modelling and Problem Solving for Computing	15	CS 1527	Object Oriented Programming	15	
MA 1005	Calculus I	15	MA 1508	Calculus II	15	
MA 1006	Algebra	15	MA 1511	Set Theory	15	

PROGRAMME YEAR 2-120 Credit Points					
First Half-Session			Second Half-Session		
Course Code	Course Title	Credit Points	Course Code	Course Title	Credit Points
CS 2020	Software Programming	15	CS 2513	Mathematics for Computing Science	15
CS 2019	Databases and Data Management	15	CS 2522	Algorithms and Data Structures	15
MA 2008	Linear Algebra I	15	MA 2508	Linear Algebra II	15
MA 2009	Analysis I	15	MA 2509	Analysis II	15

PROGRAMME YEAR 3-120 Credit Points					
First Half-Session			Second Half-Session		
Course Code	Course Title	Credit Points	Course Code	Course Title	Credit Points
CS 3028	Principles of Software Engineering	15	CS 3528	Software Engineering and Professional Practice	15
MX 3020	Group Theory	15	MX 3535	Analysis IV	15
MX 3035	Analysis III	15	EITHER MX 3531	Rings and Fields	15
			$\begin{aligned} & \hline \text { OR } \\ & \text { MX3536 } \end{aligned}$	Differential Equations	15
Plus one of the courses listed below:			Plus one of the courses listed below:		
CS 3033	Artificial Intelligence	15	CS 3518	Languages and Computability	15
CS 3026	Operating Systems	15	CS 3534	Distributed Systems	15
			CS 3525	Enterprise Computing and Business	15

PROGRAMME YEAR 4-120 Credit Points					
First Half-Session			Second Half-Session		
Course Code	Course Title	Credit points	Course Code	Course Title	Credit points
MX 4082	Galois Theory	15	CS 4525	Joint Honours Computing Project	30
Plus further credit points from level 4 courses in MX4 courses and CS4 courses to gain a total of 60 credits in each discipline. A graduating curriculum for the Honours degree must include 90 credit points from Level 4 courses.					

Notes	
1.	Designated Programme: See Supplementary Regulation 1 A minimum curriculum at Level 3 must include at least 90 credit points from the courses listed under the Honours programme, of which at least 45 credit points must be from Computing Science and at least 45 credit points from Mathematical Sciences.
2.	Candidates seeking entry to the Junior Honours programme must have accumulated, by award or recognition, or been exempted from, at least 240 credit points at levels 1 and 2, including those compulsory courses required to enter programme year 3.

