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Abstract: Digital Rock Technology comprises a set of image-based modelling 

techniques that analyse rocks at the pore level, gaining insight essential in industries 

including geological carbon dioxide sequestration, underground hydrogen storage, oil 

and gas, or geothermal energy. Pore Network Modelling simulates flow through a 

network of pores and throats representing a rock sample's void space, which results in 

improved e iciency and scalability compared to conventional simulation methods. We 

propose using semantic segmentation to identify the location and geometry of complex 

features such as fractures and vugs.  Convolutional Neural Networks, a form of deep 

learning technology, can assist in automating the time-consuming process of handling 

extensive X-ray micro-computed tomography (micro-CT) data. 

However, a solely accuracy-focused approach neglects the importance of e iciency 

and interpretability. This study explores the e ect of deep-learning architecture choices 

on micro-CT semantic segmentation performance, considering computational resource 

e iciency and carbon footprint under the Green AI principles. The proposed novel 

objective function, incorporating topology and curvature information via Minkowski 

functionals, shows a 4% improvement in the accuracy of pre-trained models, and the 

study presents a strategy for selecting the optimal configuration. To address the lack of 
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available labelled datasets, an algorithm was developed for generating semi-synthetic 

image-label pairs using features from publicly available data. 

Keywords: Digital Rock Technology, Computational Porous Media, Machine Learning, 
Deep Learning, Green AI, Image Segmentation 

 

1 Introduc on 

Digital Rock Technology (DRT) uses high-resolution imaging, such as 

microcomputed X-ray tomography (micro-CT), and numerical simulations to study rocks 

at the microscale (Japperi et al., 2022). DRT is crucial in geoscience and engineering 

applications like hydrocarbon exploitation, carbon capture and storage, geothermal 

energy, and underground hydrogen storage, as it enhances the understanding of rock 

properties and predictions of fluid flow (Japperi et al., 2023). The complex pore space of 

real rock, for example, is often represented by a network of large pores of simple 

geometries (pore bodies) and straight constrictions that connect them (pore throats). 

Pore network modelling (PNM), a key component of DRT, simulates fluid flow in porous 

media through such pore networks, providing e iciency and simulation speed gains of 

up to two orders of magnitude. (Xiong et al. 2016, Rabbani and Babei 2019, Zhao et al. 

2020). 

Fractured and vuggy carbonates are challenging formations to analyse, even when 

using advanced imaging techniques. Therefore, they are suited to analysis using PNM 

because direct simulation, like finite element methods or Lattice Boltzmann, incurs high 

computational costs due to the multi-scale domain and complex features (Wang et al., 

2022; Xiong et al., 2016).  

Wang et al. (2022) identify the complex pore structure, fracture-vug 

interconnectivity, heterogeneity and lack of standard methodologies as main obstacles 

in processing images of this kind. Unlike the existing literature, our new method focuses 

on performing semantic segmentation of the three classes of interest (pores, vugs and 

fractures). This entails partitioning images with varied geometries into multiple 

meaningful categories by classifying the pixels belonging to each feature, even when 

these features intersect. To achieve this, we use a diverse database of rock samples with 
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varied geometries. In addition, we propose a new algorithm for creating semi-synthetic 

label images, hence addressing the need for an extensive benchmark dataset.  

All DRT methods involve imaging and modelling (Berg et al., 2017), but for the 

application of Multi-feature Pore Network Modelling (MPNM), a new intermediate step is 

necessary: that of multiclass semantic segmentation of the porous medium. This entails 

obtaining the geometry and distribution of each feature rather than the conventional 

solid-void binarisation. This new stage bridges the image acquisition from rock samples 

and the DRT network construction and simulation. The workflow is illustrated in Fig. 1.  

 

Figure 1: Illustration of the overall process: micro-CT fractured carbonate rock of size 300x300x300  
extent and 2.5 µm resolution (left), segmentation (centre) followed by MPNM (right).  

Artificial intelligence (AI)-based image segmentation, mainly using deep learning, 

has become a crucial tool in computer vision applications, ranging from medical imaging 

to remote sensing. However, as micro-CT imaging capability has improved to capture 

higher resolutions, the data volume produced is vast, prohibitively so for manual 

labelling. Furthermore, our particular semantic segmentation case also has additional 

challenges. Firstly, the grey-level values of the micro-CT Images may be very similar 

between the three classes of interest (pores, fractures, and vugs), making conventional 

thresholding techniques ine ective. Secondly, fracture and vug features may also 

appear at various scales, making the simple size-based analysis ine icient. This has, 

therefore, led to an increased reliance on statistical approaches, deep learning in 

particular. An example is convolutional neural networks (CNN), which have achieved 

highly accurate results in tackling challenging problems like the current ones (Kazak et 

al., 2021; Niu et al., 2020). 

 CNNs depend on two interconnected pathways: the encoder, which begins with 

the original image and represents it in a latent space, and the decoder, which takes the 

latent representation and transforms it into the segmentation output. This architecture 

750 µm 
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o ers significant flexibility to deep-learning models, allowing them to autonomously 

generate numerous features. However, interpreting these deep-learning layers can be 

challenging.   

2 Convolu onal Neural Network Methods 

CNN are a versatile group of algorithms, e ective in many contexts, including 

image segmentation for biomedical, engineering and geoscience tasks (Yeung et al. 

2022; Wang and Zai 2023; Das et al. 2022; Malik et al. 2021; Yun et al. 2019), but the 

e ect of di erent design decisions on the outcome varies depending on the application, 

and there is no agreement on the combined significance of these choices (Rex et al., 

2022). Therefore, the performance and resource e iciency of several advanced CNN 

segmentation algorithms is assessed, while considering the e ect of design choices on 

e ectiveness and segmentation frugality.  

Unlike other segmentation methods, which usually rely on user-defined filters 

before running the algorithm, as used in Panaitescu et al. (2023)  for a similar 

application, CNN automatically learns this input-label mapping based on a high volume 

of examples. It generally depends on an encoder-decoder method where the former 

successively extracts information and represents the image in a latent space. At the 

same time, the latter starts with the latent representation and produces the desired 

segmentation result. 

The general model selection will be split into multiple factors of interest, 

enumerated below and treated in more detail in the following sections. Firstly, the 

network size and depth will be considered. A flow chart of the overall analysis and model 

selection strategy is available in  Appendix 7.1. Secondly, the overall network 

architecture will explore three advanced options typical for biological and geological 

micro-CT segmentation: the U-Net, Link-Net and Feature Pyramid Network (FPN).  

Design options for backbones inspired by ResNet, E icientNet and the VGG (proposed 

by the Visual Geometry Group) will also be considered. Further, we will discuss the 

impact of pre-trained models. Pre-training (also referred to as transfer learning) entails 

using models trained for classification tasks on an entirely di erent set of natural 
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images. The pre-training goal is to provide a more robust and informative model 

initialisation, e ectively leveraging previous resources invested in training similar 

algorithms. The pre-trained model is then fine-tuned on a smaller dataset for the specific 

required task  (Han et al., 2021). Finally, two options will be considered for the objective 

function choice, also known as loss functions. The first option is the Focal Loss (FL) - 

proven in the literature to be highly e ective for unbalanced datasets (where the 

numbers of examples in each class are highly di erent). The second option is a novel 

hybrid extension of FL that includes curvature and topology via the Minkowski 

functionals.   

The overall architecture relies, at every level, on layers of weight parameters, which 

are continuously adjusted using the back-propagation technique based on training 

examples. The training methodology used is also essential as the dataset is split into 

three subsets: training, testing, and validation datasets. The testing dataset is also used 

when adjusting hyperparameters and selecting the best-performing model. At the same 

time, the last data subset aims to provide an unbiased estimate by any previous choice 

or test.  

If a model is too complex relative to the size of the training data, it can overfit: it 

performs well on the training data but poorly on new data. Therefore, monitoring the 

training and validation losses during the training process is performed to detect 

overfitting (Fig. 2).  

Furthermore, early stopping can help prevent overfitting by halting the training 

process when the validation loss increases. In this research, we have adopted this best 

practice and stopped the training process at the first plateau of the process, considering 

a patience parameter of five epochs (complete passes of the entire dataset through the 

algorithm). 
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Figure 2: Typical classification loss (or error) evolution profiles on training and validation datasets: after a 
certain point (indicated by the dotted line), the algorithm can start overfitting, improving the training metric 
by memorisation and decreasing performance on un-seen, generalisable data. 

2.1 Architecture Design 

The U-Net, shown in Fig. 3, is the most popular deep learning architecture used for 

micro-CT image labelling, created initially with medical micro-CT in mind (Ronneberger 

et al., 2015). It has an architecture similar to an auto-encoder with an encoding path that 

decreases the size of the latent layers whilst increasing their number and a decoding 

path that achieves the opposite, hence synthesising and reconstructing images of the 

same shape as the input, which has been transformed inside the latent space. In 

addition, information from previous layers is concatenated (or added, as in the case of 

the Link-net variation, as first proposed by Chaurasia and Culurciello in 2017) from the 

encoder path to the decoder layers of the same size.  

Figure 3: The U-Net and Link-Net Design showing the encoder-decoder path and the cross-connections. 
The input image is a typical greyscale view (256 levels), and the output has only five levels: matrix, pores, 
fracture, vugs, and secondary mineralogy. The image is of a typical vuggy fractured carbonate reservoir 
rock of 256 by 256 extent and 2.5 µm resolution. 
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The U-Net has seen continuous use since its proposal, including micro-CT 

segmentation, property prediction of porous media, denoising, and others (Wand and 

Za, 2023; Liu et al., 2020). The Link-Net has also been used continuously, including 

geological segmentation examples by authors such as Malik (2022) or Das et al. (2022). 

 

Figure 4: Feature Pyramid Network (FPN) architecture schematic, showing images of rock of 256 by 256 
extent and 2.5 µm resolution.  

The last architecture considered is the FPN, first proposed for object detection by 

Lin et al. (2017). Like the previous two architectures, it is commonly used in segmenting 

biomedical micro-CT but has seen comparatively less usage in geoscience applications. 

One  example of its use in the latter fields includes its application to the segmentation 

of seismic profiles (Li et al., 2020). 

The architecture uses a bottom-up and top-down pathway to automatically 

generate a feature pyramid, not predefined by the user. The feature pyramid consists of 

several thousand representations with the same number of pixels but represents the 

image at di erent scales. It is thus able to learn cross-scale abstractions more directly. 

The feature pyramid replaces the encoder-decoder component of U-Net and Link-Net, 

as shown in Fig. 4. 

2.2 Backbone Design 

This research defines the backbone as the potentially pre-trained set of connected 

convolutional neural network layers that do not include the classification head. It 

e iciently extracts data representations via feature maps. The feature maps are 
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subsequently transmitted to the segmentation head, consisting of convolutional layers, 

up-sampling layers, and other specialised layers, aiming to generate the ultimate 

segmentation output. In the current research, three backbones are analysed (VGG, 

ResNet and E icientNet); they were first proposed by Simonyan and Zisserman (2014), 

He et al. (2016), and Tan and Le (2019), respectively. The Imagenet pre-trained weights 

for all three are publicly available.  

VGG and ResNet focus on small-size convolution operations, hence emphasising 

short-range interactions (though by using depths, longer-range correlation can also be 

learned). In addition, ResNet introduces the concept of residual connection, illustrated 

in Fig. 5, which confers additional learning flexibility to CNN. 

 

Figure 5: Residual connection concept 

It also helps alleviate the common ‘vanishing gradient’ issue, improving the 

training process. Finally, E icientNet uses a compound model scaling optimised using 

grid search. This preliminary filter selection concept allows it to achieve state-of-the-art 

accuracy on many tasks with a shallower design. The compound scaling feature also 

allows E icientNet to use convolutional filters of varied aspect ratios.  

2.3 Objec ve Func on Design 

The objective function computes the error incurred during prediction and is used 

to adjust the network weights. Several studies (Yeung et al., 2022; Ma et al., 2021; Lin et 

al., 2017; Yun et al., 2019) have shown that objective function design can significantly 

impact the model’s ability. Here we use the Focal Loss (FL), shown in Eq. 1, and a novel 

loss function we named the Minkowski Di erence Loss (MDL), whose mathematical 

formulation is shown in Eq. 2-5. FL is an objective function especially suitable for 

unbalanced datasets, like the one presented in these examples. It is a dynamically 
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scaled version of the cross entropy metric, using the following formula: γ is the focusing 

parameter, and pt is the class probability. γ reduces the loss for well-classified cases, 

focusing more on the other classes (Lin et al., 2017) 

𝐹𝐿(𝑝 ) = −(1 − 𝑝 ) 𝑙𝑜𝑔(𝑝 )      (1) 

Porous media research has shown that the topography and area are crucial in 

characterising rock samples, traditionally using measures such as the Euler Number or 

the Betti Numbers (Blunt, 2017). Recently, even more focus has been placed on the 

ability to use the Minkowski functionals to characterise porous media (for a 2D image, 

the first three, denoted as M0, M1, and M2, measuring surface area, curvature and 

topology, shown mathematically in Eq. 2-6, respectively). In addition, new research has 

shown their ability to characterise rocks (Armstrong et al., 2018; Nair et al., 2021). 

However, these parameters are not used in general computer vision applications, but 

they inspired our current approaches. Therefore they have been included to explicitly 

focus on connectivity and treat it as a learning objective.  

The definitions apply to a smooth geometry (𝑋) with a boundary 𝛿𝑋. Legand et  al. 

(2011) provided a theoretical background for computing the Minkowski function based 

on digital images. The theory and the mathematical formulation of Eq. 2-4 come from 

Boelnes and Tchelpi (2021). Therefore we propose a new metric (Eq. 5) that adds a new 

factor to the Focal Loss that incorporates these terms, hence introducing metrics with 

enhanced physical relevance compared to exclusively image-based measures. The MDL 

has the following formula (Eq. 6), where the M relative errors, 𝑑𝑠 is an area unit element, 

𝑑𝑐 is a circumference unit element, and R is the local curvature radius. 

 𝑀 (𝑋) = ∫ 𝑑𝑠                    (2) 

𝑀 (𝑋) = ∫ 𝑑𝑐                  (3) 

𝑀 (𝑋) = ∫ 𝑑𝑐     (4) 

𝑀 , =
  ( )

(  )
, 𝑗 ∈ {0,1,2}         (5) 

𝑀𝐷𝐿 = 𝐹𝐿 + 𝑀 , + 𝑀 , +  𝑀 ,                  (6) 
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3 Materials and Methods 

3.1 Hardware and So ware Requirements  

Algorithm tuning is performed using cloud high-performance computing resources 

to allow fast and reliable resource allocation on a global scale and leverage new 

processor technology (high-performance Graphics and Tensor Processing Units (GPU 

and TPU) available in the Google platform. The resource use will be benchmarked on a 

final training performed on a local computer with Intel® Core™i9-10885H CPU and eight 

cores. The CNNs were implemented in Python, using the TensorFlow library and the 

Segmentation Models Library (Iakubovskii, 2019) as a consistent starting point. The 

experimental design and factor analysis were performed using the JMP statistical 

software. Including Minkowski functionals in the objective function leverages an 

implementation by Boelnes and Tchelpi (2021). 

3.2 Semi-synthe c Image Synthesis and Genera on Algorithm  

Due to the need for a much larger dataset than readily available, this project 

created a semi-synthetic training dataset using fractures from samples that can be 

confidently and automatically segmented. Databases of 2D 256x256 pixels segmented 

features were created separately from a total of 10 separate images. The advantage of 

this approach is that each feature is correctly and fully labelled, and they can be 

reassembled to create fully labelled combined training datasets that emulate samples 

with pores, vugs, and macro-fractures. The re-combination algorithm pseudocode is 

presented below; the original dataset samples for the semi-synthetic training images are 

shown in Fig. 1. Once a database of appropriate semi-synthetic labelled images has 

been created, as specified above, enough data should be available for a deep learning 

algorithm to be applied (typically at least 3000-5000 images, in our case creating a total 

of 3600). The algorithm's description can be found in Appendix 7.2. 
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3.3 Green Ar ficial Intelligence  

Green AI evaluates algorithms holistically based on accuracy, e iciency, and 

explainability. It optimises AI algorithm design with a balanced focus on resource use 

and classification performance. E iciency analysis traditionally considers memory and 

computational speed, but we also examine energy consumption and environmental 

impact, such as carbon footprint, as formulated in Anthony et al. (2020) and Budennyy 

et al. (2023). 

Recent studies reveal that training large AI models can have a significant impact: a single 

training of the largest current AI models emits approximately 300 tons of carbon dioxide 

Dhar (2020). Furthermore, the current trend in model size shows a 300,000 times 

increase over just the six years before 2019, as noted by Schwartz et al. (2019). This trend 

appears linear over the six years monitored; however, the performance uplift provided 

by the larger models is not linear, yielding diminishing returns after a certain point. The 

models investigated in this article are smaller but still large enough (up to 7 million 

parameters) to account for significant emissions. Moreover, some model selection and 

design adjustments can disproportionately impact resource use. 

Computational and environmental resource frugality were measured using the 

method by Anthony et al. (2020), with the CO2 footprint quoted for Aberdeen, UK, whose 

variable values are seen in Fig. 6. The energy output is proportional to the number of 

operations (FLOPS) and carbon footprint, with computations performed under the same 

setup and conditions. The Green AI analysis focuses on performance-resource use 

optimisation while acknowledging similar explainability challenges across all deep 

convolutional network architectures. 

Figure 6: Carbon Intensity registered during the training period presented with a bin size of 38.8 gCO2/kW. 
The computed mean and standard deviation are 115.8 gCO2/kW and 58.5, respectively. 
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3.4 Design of experiments 

The design of a deep learning system is treated somewhat subjectively and 

experimentally, where there are no clear guidelines for optimal design. Whilst there are 

some patterns and generally accepted principles, there is currently no consensus on 

general design methodologies and best practices. Several challenges have hindered the 

creation of such standards, including the following: (A) A high degree of domain 

specificity. The best approaches in some areas of computer vision can perform sub-

optimally in others.  However, some successful approaches can be adjusted for 

application to problems with similar characteristics such as some tomography analysis 

techniques are often successfully shared between soil science, geoscience and 

biomedical science. (B) The high complexity and probabilistic nature of algorithms make 

it difficult for humans to understand the decision-making process and predict the effect 

of changes in all parameters. (C) The tendency to over-fit when trained on small datasets 

makes data curation and acquisition a critical step for the successful application of a 

system. (D) Finally, the number of hyper-parameter present in models and the diversity 

of hyper-parameter tuning strategies, some of which emphasise search speed in the 

hyper-parameter space over absolute optimisation and this makes the comparison 

between different studies more difficult.  

To address these challenges, this study will employ a Design of Experiments 

approach in order to determine the relative importance of four factors of interest (overall 

model architecture, residual block design, transfer learning, and objective function 

choice), having three, three, two and two levels, respectively. In order to systematically 

and efficiently obtain insight, a resolution IV fractional factorial design was proposed. 

The optimal design planning ensures orthogonality allowing the investigation of effects 

and first-order interactions without confounding, which is the primary interest of this 

study, in only twenty runs. Further confounding only occurring second and higher-order 

interactions). This is particularly important in maintaining high resource efficiency, as 

each training run takes several days to complete. The design can be found in Appendix 

7.3.  
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The factors of interest for the current research are transfer learning, described as  

where the weights have been initialised using the values provided by other researchers 

investigating different classification problems using natural images from the Imagenet 

database, the overall network design (U-Net, Link-Net, FPN), residual block design 

(ResNet, EfficientNet, Inception), and objective function (Focal Loss, and Minkowski 

Functional Difference).  

4 Results and Analysis 

The analysis will  consider the model performance, measured primarily by the 

Intersection-Over-Union (IOU) and F1 metrics (equally weighting the reciprocal of type 1 

and type 2 errors to form a balanced metric). Precision and Recall (or type 1 and 2 errors) 

are also quoted for each experiment; however, the F1 score o ers a more balanced view, 

combining both error types. Finally, IOU (or Jaccard Score) overlaps the prediction and 

ground truth, measuring the relative ratio of their intersectional area divided by the entire 

estimated area. 

4.1 Mul -factor Analysis of Segmenta on Performance 

In general, larger deep learning models perform better than shallower versions. 

Further, this article considers the impact of model depth and the number of parameters.  

Given the objective of utilising pre-trained models as a focal point, the model's design 

had to align with the available pre-trained configurations. Consequently, achieving a 

perfectly constant number of model parameters for our initial analysis proved 

challenging, even though the aim was to make the selection as similar as possible. To 

counteract this, this research checked the dependence of precision accuracy on the 

parameter plane, and, as shown in Fig. 7, for our selection of parameters, the relatively 

small variation in network size has a negligible e ect.  
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Figure 7: Performance against model size for our experimental design, showing the lack of expected size 
performance proportionality in our selection, hence blocking this e ect. 

The relative importance of each factor in the design experiment has been obtained 

by linear modelling, firstly analysing the IOU measure followed by the F1 analysis. The 

top 5 factors for IOU identified, presented in order of importance, were: Backbone and 

transfer learning interaction, Backbone and Objective functions interaction (for VGG), 

followed by the Backbone selection, and the Transfer Learning decision. The importance 

of the factor interactions is presented in Fig. 8.  

 
Figure 8: Interaction profiles: cross-over of lines further highlights the e ect of second-order interaction 
terms. 

It can be concluded that the backbone selection and usage of transfer learning are 

the most critical choices on an individual basis, and the new objective function 

produces, on average relatively reduced impact, though still statistically significant. 
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However, the new objective function yields significant improvement when combined 

with other parameter combination - the novel Minkowski function produces a 4% 

improvement in IOU scores over the Focal Loss when only considering transfer learning 

experiments, as shown in Fig. 9. The top 3 IOU scores were 0.845, 0.844, and 0.844, 

respectively. They all used E icientNet as a residual block backbone and started with 

pre-trained weights based on Imagenet. Moreover, the top two used the new Minkowski 

Di erence objective function. Each of the three, however, uses a di erent overall 

architecture. 

 
 

Figure 9: the E ect of backbone and objective function on model performance, showing their complex 
interaction. 

Figure 10: Interaction profiles using F1 as the metric of interest. 
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Interestingly, one result of this research is the behaviour of the novel Minkowski 

Di erence objective function: it improves performance by at least 2% compared to 

Focal Loss for all architectures that have started with pre-trained weights, with a 

particularly distinct improvement in IOU scores. However, for models where the weights 

were initialised randomly (not leveraging transfer learning), the new objective function 

decreases performance by as much as 3%. This kind of behaviour is likely due to the 

improved ability of the new function to model our specific dataset; however, the pre-

trained weights help avoid early overfitting. 

The analysis was repeated using F1 as the overall performance metric. The general 

findings are similar to the IOU case, as shown in Fig. 10, though some di erences were 

also observed. The top 5 factors influencing the F1 result identified were: Backbone and 

Architecture interaction (combination of all Architectures with E icientNet and VGG), 

Architecture and Objective functions interaction, followed by the Transfer Learning and 

Objective function interactions. Interestingly, the most important factors explaining the 

F1 score do not even include the individual factors and instead are all focused on the 

selection of multi-factor combinations. 

Regarding F1, the top 3 performing architectures again use E icientNet as the 

backbone, achieving scores in excess of 90%. All three top scores also used transfer 

learning, with the two employing the new objective function. 

To further increase our understanding of  the analysis, we have also split the F1 

scores into the Precision and Recall scores (known as type 1 and 2 errors). Here, again, 

the E icientNet backbone and the Transfer learning strategy dominate. However, here 

the new objective function has a significant potential uplift (up to 3.5% with negligible 

potential lowering accuracy in all combinations). On the other hand, its e ect is much 

more varied on Recall (on average, having 0 e ects as it can both aid performance - if 

combined with Imagenet weights or otherwise hinder it by the same amount). 

4.2 Analysis of the Model Size on Performance Accuracy 

As suggested throughout the previous analyses, the e ect of the model size on the 

predictive capability has also been examined in more detail. Two skilful models were 
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investigated: (A) FPN – E icientNet – Pretrained – Focal loss and (B) UNet – E icientNet 

– Pretrained – Minkowski Di erence Loss. The most direct and consistent way to change 

the model size is by adjusting the backbone. 3 backbone sizes were selected from the 

available pre-trained models: E icientNet-b1, E icientNet-b4 and E icientNet-b7. The 

alternative method  was the configuration examined in the designed experiment above. 

The analysis concludes that of the problem and dataset at hand, further increase 

of the model size only achieves marginal returns. When increased by more than an order 

of magnitude, the model only achieves at most 1.8% improvement in IOU score and 

1.1% improvement in F1 score, therefore having a minor impact than the objective 

function choice as well as the backbone-architecture selection. The performance metric 

most a ected by the model size is Precision (by up to 2.2%). However, the Recall has 

the opposite e ect, albeit smaller in magnitude. The Performance variation with 

parameter space size is visualised using bubble charts, which also capture the size 

e ect on resource use which is not directly proportional. 

 Deeper networks can achieve better accuracy but only have marginal returns, 

though a more linear relationship can be seen rather than the exponential (straight line 

on the semi-log scale) (Fig. 11). 

From this size-e iciency-performance analysis, it can be concluded that, for this 

problem, it is more important to focus on other parameters rather than depth alone. 

Optimising the architecture-backbone-objective function match provides a more 

significant performance uplift than the increase in size, and performing this analysis is 

also less expensive regarding computation and environmental resources. While, by 

definition, increasing the mode size, especially in terms of depth (nr of layers), can never 

decrease performance given the available dataset is su icient, after a certain point, 

these gains plateau: despite significant size increase in the model, the improvement in 

prediction performance is modest, as highlighted in Fig. 12. 
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Figure 11: Model performance, measured by (a) IOU, (b) F1, (c) Precision, and (d) Recall, against 

network size, quantified by the number of trainable parameters and plotted using a base ten semi-log 

scale. The bubble area is directly proportional to FLOP usage or energy consumption per 100 epochs. 

 

Figure 12: Model performance, measured by (a) F1, (b) IOU, (c) Precision and (d) Recall, against network 
size, quantified by the number of hidden layers (equivalent to network depth). The bubble area is directly 
proportional to FLOP usage or energy consumption per 100 epochs. 
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4.3 Mul -factor Analysis of Algorithmic Resource Use 

The e ect of the same primary factors for the resource e iciency analysis, except 

whether the model was pre-trained, was investigated. As shown above, this factor is 

important for predictive performance, however, it is not essential for energy 

consumption or resource use, so it was eliminated to simplify the analysis. The analysis 

is based on fitting a linear model with categorical inputs (Architecture, Backbone, 

Objective Function) and a continuous output (Algorithm resource consumption, 

estimated using the kW/100 epochs as a measure). The model fitted achieved an R2 

score of 0.96 and a P-Value of 0.0036, indicating the results’ statistical significance. 

Unlike the Intersection-Over-Union and F1 Score analysis, the resource use 

analysis can determine that the selection of the main factor of the overall architecture 

is the most critical determinant of resource use, as seen in Table 1 below. The choice of 

backbone blocks follows it, however, the two top factors are relatively independent 

(their interaction being the most negligible factor to the model, also achieving a P-Value 

higher than 0.51). Therefore, the performance prediction of models is far simpler than 

their performance on the given task relying heavily on the network’s overall design. 

 

Table 1: Energy Use Modelling Results 

Factor P-Value Logworth 

Architecture 0.00047 3.324 

Backbone 0.00137 2.863 

Architecture - Objective Function Interaction 0.08425 1.074 

Objective Function 0.23124 0.636 

Backbone - Objective Function Interaction 0.43500 0.362 

Architecture - Backbone Interaction 0.52148 0.283 

To o er a more precise overview, the interaction profiles have also been plotted 

(Fig. 13), showing how the choice of FPN significantly increases resource requirements 
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across the board and the selection of ResNet for backbone reduces the resource 

requirements. The choice of objective function between Focal and Minkowski is also 

shown to have relatively little e ect. 

The top three architectures for resource use all use the ResNet backbone with 

LinkNet architecture combination. The di erence in resource use is significant, with the 

most e icient networks achieving, on average, 0.65, 0.83 and 0.87 kW/100 epoch, and 

the three most resource intensive requiring 3.24, 3.04, and 2.62. The most resource-

intensive algorithms use the FPN architecture, which was shown to be highly accurate.  

This comparison highlights the much more significant di erences in resource usage 

compared to accuracy, with the lightest model requiring only 20% of the most expensive 

model’s resources.  

 

Figure 13: Interaction profiles using local energy usage as the metric of resource intensity. 

Therefore, the top-performing model (FPN, E icientNet, Minkowski) ranks third 

worse in resource requirements, though not the most resource-intensive, with 2.62 

kW/100 epochs. The second best performer in terms of IOU and F1 measures, however, 

places roughly average, with 1.89 kW/100 epochs consumption. The average of all 

models studied being 1.80 kW/100 epochs, therefore, comparing the top two models on 

these criteria, the top model results in 0.071% and 0.19% improvement in IOU and F1 

scores over the second-best performing model. However this also produced 45.6% 

increase in resource use. 
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5 Conclusion 

In conclusion, this study aimed to achieve a resolution IV experimental design 

configuration that helped  identify the main factors a ecting the process and the 

outcome of the matrix-pore-fracture-vug semantic segmentation of rock micro-CT 

samples. It also helped  to discern their first-order interaction and analyse the 

performance of the applied segmentation model.  

The segmentation performance analysis showed that larger deep learning models 

performed only marginally better than baseline configuration (20-25 million 

parameters). It was  found that the most significant choices on an individual basis are 

backbone selection and transfer learning. Additionally, the novel Minkowski Di erence 

objective function improves performance by at least 2% compared to Focal Loss for all 

architectures that had started with pre-trained weights. The improvement was 

particularly distinct in IOU scores.  

When also considering the GreenAI pillars of computational e iciency and 

environmental impact, the UNet – E icientNet – Pretrained – Minkowski Di erence Loss 

model configuration was found to be best as it o ers very high segmentation accuracy 

and moderate energy consumption (40% lower compared to the only better-performing 

configuration). Hence this study prioritises classification accuracy, but analysing 

resource intensity also significantly reduces resource usage and carbon footprint. 

Further work can be carried out comparing these models with algorithms with 

higher explainability. Moreover, the study investigated the applications of 2D 

convolutions to the analysis of 3D images, as is the currently dominant approach, but 

3D convolutions could also be discussed in future research. 

Overall, this study o ers an analysis of deep learning convolutional neural 

networks applied to the problem of multi-class semantic segmentation of 3D micro-CT 

images. It was proposed a novel loss function that, whilst focusing on connectivity and 

curvature, which are  essential features for porous media flow, – also improves the 

conventional area and pixel-based computer vision metrics. It was shown that using the 

Green AI principles can balance resource use and accuracy, obtaining significant 
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increases in e iciency for minimal accuracy losses. The results of this algorithm can be 

used to enhance the modelling of heterogeneous (fractured and vuggy) samples using 

the multiscale pore network model, o ering a way to improve understanding and 

prediction of flow behaviour in the subsurface formations. This tool, integrated into the 

overall digital rock technology workflow and can o er critical insights for designing and 

optimising reservoir engineering projects.  
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7 Appendix 

7.1 Deep Learning Algorithm Evalua on and Selec on Flow Chart 

 

Figure 14: Model training, evaluation and selection analysis showing the design of experiments factors of 
interest in red and the evaluation criteria in grey. 

7.2 Algorithm for Semi-synthe c Image Genera on 
 

Inputs:  
Image bank containing pores, vugs, fractures and secondary deposition features  
Probability of selecting a pore, vug, or fracture image: ppore, pvug, pfracture  

Outputs:  
Semi-synthetic training images  

Steps:  
1. Initialise an empty list to store selected images.  

2. Loop through the number of desired training images:  
a. Choose a random image from the image bank based on probabilities 

ppore, pvug, and pfracture.  
b. Apply random augmentations (rotation, translation, random intensity 

addition, zoom and cropping) to the selected image.  
c. Add the augmented image to the list of selected images.  

    3. For each selected image:  
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a. Combine the pore and matrix images and adjust the mean intensity and 

histogram using normalisation and matching.  
b. Add the vug image geometry to the combined image and perform 

watershed segmentation on the pores.  
c. Re-label the individual pore elements if they intersect any vug 

elements.  
d. Add the fracture image to the segmented image and re-label any 

intersecting pore elements as fractures.  
e. Re-label any vug elements as fractures if they meet the criteria of 

sharing at least 1 pixel with a fracture element and having an intersected 

area of at least 25% of the vug area.  
f. If fractures intersect with vugs and do not meet the above criteria, some 

fracture pixels should be labelled as vugs using the following procedures:  
       i. Find the line perpendicular to the main fracture axis.  

ii. Iteratively enlarge the vug area using morphological operations 

(dilation).  
iii. Re-label the new boundary pixels if any pixels on the line 

perpendicular to the main fracture axis are still labelled as 

fractures.  
g. Isolate all intersecting vugs and fractures and histogram match to 

remove any a-physical artefacts, such as sharp grey level boundaries at 

the transition between the fracture and vug void space.  
h. Superimpose secondary deposition features (e.g. pyrite crystals) if they 

exist in the target example.  
4. Return the list of semi-synthetic training images.  
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7.3 Design of Experiments (DOX) Model Results 

Table 2: Scaled estimates for the DOX model of energy consumption against the main factors considered 
– nominal factors expanded to all levels. 

 
 

Table 3: Scaled estimates for the DOX model of performance, using the IOU metric (left) and F1 metric 
(right) against the main factors considered – nominal factors expanded to all levels. 
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Table 4: Design of experiments results for the orthogonally selected factors 

Run Backbone Architecture Pre-training Objective unction F1 IOU Precision Recall Trainable Parameters Average Energy (kW/100 epochs) Nr. Layers Carbon Footprint (gCO2/100 epochs) 

1 E icientNet FPN No M 0.7915 0.6904 0.819 0.8053 20,793,805 2.62 514 304 

2 ResNet FPN Yes F 0.872 0.79 0.87 0.875 23,917,896 2.20 205 255 

3 VGG UNet No F 0.8853 0.8167 0.896 0.8898 23,748,821 2.15 66 248 

4 E icientNet UNet Yes M 0.9039 0.8446 0.9135 0.9113 25,608,413 1.89 508 219 

5 VGG UNet Yes M 0.8996 0.8388 0.9142 0.8993 23,748,821 2.43 66 282 

6 ResNet LinkNet Yes F 0.857 0.7655 0.8344 0.8812 21,620,408 0.64 214 74 

7 E icientNet LinkNet Yes M 0.9036 0.8456 0.9214 0.9027 21,586,877 1.62 523 187 

8 ResNet FPN No M 0.8098 0.7197 0.867 0.8075 23,917,896 1.92 205 223 

9 VGG LinkNet Yes F 0.85 0.78 0.89 0.83 20,318,901 1.85 81 214 

10 ResNet UNet No M 0.7942 0.7012 0.8681 0.7837 24,439,384 0.95 199 110 

11 VGG LinkNet No M 0.8783 0.8072 0.8973 0.8853 20,318,901 1.49 81 172 

12 E icientNet FPN Yes F 0.9022 0.844 0.9311 0.8936 20,793,805 3.04 514 352 

13 ResNet UNet Yes M 0.8405 0.7617 0.8896 0.8352 24,439,384 1.62 199 188 

14 E icientNet UNet No F 0.819 0.7283 0.8593 0.8088 25,608,413 1.68 508 194 

15 VGG FPN No F 0.8689 0.7935 0.8921 0.876 17,574,853 3.24 66 375 

16 VGG FPN Yes M 0.8858 0.8187 0.9305 0.8707 17,574,853 2.18 66 252 

17 ResNet UNet Yes F 0.8391 0.7579 0.8879 0.8368 24,439,384 1.16 199 134 

18 ResNet LinkNet No M 0.7806 0.6849 0.8578 0.7754 21,620,408 0.87 214 101 

19 E icientNet LinkNet No F 0.7903 0.6974 0.8441 0.7836 21,586,877 1.61 523 186 

20 ResNet LinkNet No F 0.7822 0.6893 0.8508 0.789 21,620,408 0.83 214 95 


