Professor Jan Skakle

Professor Jan Skakle
BSc, MSc, PhD(Aberd). FRSE, CPhys, FInstP, FRSC, FHEA

Personal Chair

Professor Jan Skakle
Professor Jan Skakle

Contact Details

The University of Aberdeen Room O41, Meston Building
Meston Walk, University of Aberdeen
Aberdeen AB24 3UE


I hold a Personal Chair in Physics.  From 2006-2008 I was Head of Physics, and from 2012-2018 I was Head of the School of Natural and Computing Sciences (Chemistry, Computing Science, Mathematics and Physics). 

My first degree was a BSc (Hons) in Physics, during which I also took first year Computing Science and two years of Mathematics.  My honours project was on geomagnetism in rocks, with Dr Joe Edwards, during which I spent a lot of time on the floor fixing the instrument.  This rather unexpectedly inspired me into research!  I had originally intended to work as an airframe engineer at British Aerospace, but ended up turning down a job there and spent some time collecting my thoughts.

I was fortunate to embark on a Masters by Research with Professor Tony West as the solid state was my main area of interest.  I'd not done any chemistry as an undergraduate so it was a steep learning curve, but the Masters was on the crystallography of some complex lithium and potassium oxides and I got valuable experience working with our Research Officer, Dr R. Alan Howie.  As well as single-crystal work, I also used Rietveld refinement using powder data, including both X-ray and neutron diffraction.  I was very grateful at that time for all the Fortran I'd learned as an undergrad.

That behind me, I wandered further into the solid state working on a PhD in the 123-superconductors, specifically the La-Ba-Ca-Cu-O system which turned out to be far more extensive than previously realised, and notable trends were observed with double substitutions.  During this time I learned many new skills from the others in the group, especially in phase diagrams and ac impedance spectroscopy (Prof Derek Sinclair, Prof John Irvine, Dr Finlay Morrison, Dr Glenn Mather, Prof Xiping Jing, Dr Susana Garcia-Martin, Dr Caroline Kirk and Prof Iain Gibson to name but a few).

My first year as a post-doc followed this up, then I diversified into a project on lithium batteries, sponsored by the GS Battery Company in Japan.  I spent a little time there too, learning some of the skills used in the battery factory itself, having a short research stay in Osaka and giving some lectures around Japan.

Given this background, gaining a joint physics/chemistry position as a Lecturer was ideal for me, and with the Physics department at Aberdeen just reopened, I joined an enthusiastic, dedicated and forward-thinking team which gave me a solid base for the future.

Wind forward to today: you can find out more specifics about my research, teaching and other roles through the tabs. 


Research Interests

Solid-State & Materials

With a background in both physics and solid state chemistry, overall I may be described as a materials scientist, with emphasis on synthesis and characterisation of novel (ceramic) materials.

My research may be divided into 3 broad areas:

  1. Novel oxide materials with interesting electrical and magnetic properties
  2. Synthesis and characterisation of biomaterials/bioceramics
  3. Crystallography of novel materials 

Our research is directed towards understanding the relationship between the composition, properties and structure of these and other materials. The knowledge of structures in relation to their properties can elucidate conduction and substitution mechanisms and help towards the improvement and optimisation of materials. Structures are studied using powder diffraction, both X-ray (utilising in-house facilities) and neutron diffraction facilities at ISIS, Rutherford Appleton Laboratory and ILL, Grenoble.

(1) (Novel Oxides) is concerned mainly with the synthesis and characterisation of A-M-O oxides, where A=La,Ca,Ba,Sr, M=first row transition metals. The discovery of high temperature superconductivity in 1986 has reopened a wide interest in such complex perovkites containing first row transition metals. The electrical and magnetic properties of these systems are highly varied; properties range from metallic to insulating, from ferromagnetic to antiferromagnetic, and from cationic to anionic conductivity. More recent examples include the recent discovery of high lithium ion conductivity in the system Li-RE-Ti-O, giant magnetoresistance in doped La-Mn-O materials and oxide ion conductivity in La-Sr-Ga-Mg-O compounds. These systems contain a wealth of materials with properties ranging from ionic/electronic conductivity, superconductivity, giant magneto-resistance etc.

The strategy for the synthetic work is to study new phase diagrams, identify new materials and to use chemical doping to alter existing materials. The materials are characterised using X-ray diffraction, ac impedance spectroscopy, electron diffraction, FTIR, esr, thermal analysis, neutron diffraction etc. In this I collaborate with other chemists in the department, particularly Dr. Abbie Mclaughlin – we  recently had an EPSRC project funded and also an EastCHEM (ScotCHEM) PhD studentship in collaboration with Professor John Irvine. In addition research is being funded by EPSRC with the National Nuclear Labs (PhD studentship). We have also had three MChem students on placement to ICMCB (CNRS) Bordeaux working with Drs Olivier Toulemonde, Etienne Gaudin and Prof J-C Grenier. The methodology employed in this part of my research, in which I have the longest track record, informs area (2).

(2) (Biomaterials) has been initiated more recently and has two strands at present:

  • application of diffraction methods to biomaterials problems;
  • synthesis and analysis of bioceramics (apatite-based materials).

The first strand has involved use of our EPSRC-funded high temperature X-ray diffraction facility to analyse ceramic materials at temperatures up to 1200ºC. I am also working on methods to use this information to establish chemical composition. I have also developed, with staff in Biomedical Physics, new applications for the department's single crystal diffractometer. This has allowed measurement of orientational effects in natural materials and polymers. Finally, Prof. Richard Aspden (Medical Sciences/Orthopaedics) and I conducted the first ever neutron diffraction experiments on human cancellous bone, working at both ISIS (Rutherford Appleton Laboratory) and ILL, Grenoble. As a result we were invited to write a highlight article for the ILL annual reports. We have also been awarded a PhD studentship through the SUPA INSPIRE programme

The second strand, informed by (1), involves the synthesis and characterisation of bioceramics, particularly doping materials with the aim of improving their properties. This work is in collaboration with Prof. Iain Gibson (Medical Sciences/Chemistry) and has led to a number of patents with others are in preparation, and a spin-out company (Sirakoss Ltd.)

Some of our earlier work was supported by Apatech, Ltd (London) who funded four PhDs and an MSc studentship, supported our CTA MSc studentships and also three MChem placements.

The crystal structure of hydroxyapatite

We have recently had VC investment from Epidarex into a spin-out company, Sirakoss Ltd., following two stages of Scottish Enterprise “Proof of Concept” project funding (“Proof of Concept” project).

We also received ~£400K funding from BBSRC for a confocal Raman microscope for the study of biomaterials (both natural and synthetic) and for an associated PDRA, with two studentships funded by the two Colleges.

(3) (Crystallography) is intrically connected with (1) and (2) above. However, in parallel to this I have a side hobby! Here we are mainly concerned with crystal structure solution of organic and organometallics, often involving network analysis, i.e. identification of characteristic bonding schemes in molecular solids. The motivation for this is 2-fold:

(a) to establish whether there is a seriously likelihood of successful crystal structure prediction in the future, and to provide data which may aid in this process;

(b) to inform the other parts of my research.

A thorough grounding and awareness of current trends in fundamental crystallography is essential so as to use and develop diffraction techniques in other areas. This work has been carried out in collaboration with Dr. J. Wardell (Rio de Janeiro) and involved the team of Dr. Chris Glidewell (St. Andrews), Dr. John Low (Dundee) and myself. But, caveat emptor, please note I am not an organic, or organometallic, chemist!

Current Research

structure-property correlations in solid materials with current projects in the following areas:

  • Novel ionic conductors, mixed conductors
  • Bioceramics: development and characterisation
  • Bone: understanding collagen/bone interactions
  • Development and processing materials for waste management.

Research Grants

Currently held: 

  • EPSRC CASE PhD studentship, PI with the NNL  ~110K
  • NRP Energy Studentship, with A. C. Mclaughlin (PI)
  • SUPA INSPIRE studentship, PI with R. M. Aspden ~£99K

Also Spin-out Company - Sirakoss


Teaching Responsibilities

I teach & coordinate or co-coordinate on the following physics courses:

  • PX3016 (Solid State)  (T&C)
  • PX2512 (Cosmology, Astronomy and Modern Physics)  (T) 
  • PX4013/11 (Projects) (T&CoC)

Teach on following chemistry/materials courses:

  • CM1022 (Elements of Chemistry, "guest" lecture)
  • CM3037 (Solid State Chemistry) (T)

Teach and/or coordinate on the following Sixth Century Courses:

  • SX1017 (Global Issues, Global Religions) (T)
  • SX1516 (Mankind in the Universe)  (T&C)


Further Info

External Responsibilities


  • Chair of the Royal Society of Chemistry Solid State Group (2018 - present) 
  • Member of EPSRC College (2003 - present)
  • Member of IoP CPhys Panel (2004 - present)
  • Refereeing for over 20 Journals in solid state, inorganic, physical chemistry, biomaterials and crystallography.   
  • Member of the 'Campaign for Science and Engineering' (CaSE)

Admin Responsibilities


  • Roles associated with Head of School including College committees and appointment panels 
  • College Equality and Diversity Champion (2014-present) and Athena SWAN co-lead (NCS)
  • Elected Member of Senate (April 2003 - 2011)  Ex-officio member since 2012.
  • Elected Senate Assessor to Court (October 2011-2015)  Member of Governance and Nominations Committee (2014 - 2015), Operating Board (2015)
  • Senior Adviser of Studies (2010-2014) Adviser of Studies (1999 – 2013), International Adviser of Studies (2004 – 2011), Erasmus Adviser (2007-2012)
  • University Working Party for Assessing Teaching Quality (2011)
  • AUCU committee member (2002-2012), JNCC team (2004-2009), Caseworker (2004-2011), Treasurer (2010-2012).


Pronouns are she/her

Why am I telling you this?

1)  I have a gender neutral name, indeed a male name in some countries

2) As a Chair in Physics, unconscious bias can lead to assumptions!

3) For those from other countries where my name doesn't flag gender

4) For inclusion reasons, to flag the issue of gendered assumptions.  



Currently viewing:

Page 1 of 29 Results 1 to 10 of 284

  • Nowick, DA, Skakle, JMS & Gibson, IR 2020, 'Faster synthesis of A-type carbonated hydroxyapatite powders prepared by high-temperature reaction', Advanced Powder Technology. [Online] DOI:
  • Fop, S, Mccombie, KS, Wildman, E, Skakle, JMS, Irvine, JTS, Connor, PA, Savaniu, C, Ritter, C & McLaughlin, AC 2020, 'High oxide ion and proton conductivity in a disordered hexagonal perovskite', Nature materials, vol. 19, pp. 752-757. [Online] DOI:
  • Fop, S, McCombie, KS, Wildman, EJ, Skakle, JMS & Mclaughlin, AC 2019, 'Hexagonal perovskite derivatives: a new direction in the design of oxide ion conducting materials', Chemical Communications, vol. 55, no. 15, pp. 2127-2137. [Online] DOI:
  • Nowicki, DA, Skakle, JMS & Gibson, IR 2018, 'Nano-Scale Hydroxyapatite Compositions for the Utilization of CO2 Recovered Using Post-Combustion Carbon Capture', Journal of Materials Chemistry A, vol. 13, no. 6, pp. 5367-5377. [Online] DOI:
  • McCombie, KS, Wildman, EJ, Fop, S, Smith, RI, Skakle, JMS & McLaughlin, AC 2018, 'The Crystal Structure and Electrical Properties of the Oxide Ion Conductor Ba3WNbO8.5', Journal of Materials Chemistry A, vol. 6, no. 13, pp. 5290-5295. [Online] DOI:
  • McCombie, KS, Wildman, EJ, Ritter, C, Smith, RI, Skakle, JMS & Mclaughlin, AC 2018, 'The Relationship between the Crystal Structure and Electrical Properties of Oxide Ion Conducting Ba3W1.2Nb0.8O8.6', Inorganic Chemistry, vol. 57, no. 19, pp. 11942-11947. [Online] DOI:
  • Kirk, CA, Morrison, FD, Skakle, J, Sinclair, DC & Irvine, JTS 2018, 'Themed issue on advances in solid state chemistry and its applications', Journal of Materials Chemistry A, vol. 6, no. 13, pp. 5241-5242. [Online] DOI:
  • Fop, S, Wildman, EJ, Irvine, JTS, Connor, PA, Skakle, JMS, Ritter, C & McLaughlin, AC 2017, 'Investigation of the Relationship between the Structure and Conductivity of the Novel Oxide Ionic Conductor Ba3MoNbO8.5', Chemistry of Materials, vol. 29, no. 9, pp. 4146-4152. [Online] DOI:
  • Baddeley, TC, Gomes, LR, Low, JN, Skakle, JMS, Turner, AB, Wardell, JL & Watson, GJR 2017, 'Structural studies of (E)-2-(benzylidene)-2,3-dihydro-1H-inden-1-one derivatives: crystal structures and Hirshfeld surface analysis', Zeitschrift fur kristallographie-Crystalline materials, vol. 232, no. 4, pp. 317-333. [Online] DOI:
  • Wildman, EJ, McLaughlin, AC, MacDonald, JF, Hanna, JV & Skakle, JMS 2017, 'The Crystal Structure of Ba3Nb2O8 Revisited: A Neutron Diffraction and Solid-State NMR Study', Inorganic Chemistry, vol. 56, no. 5, pp. 2653-2661. [Online] DOI:
Show 10 | 25 | 50 | 100 results per page