
A practical application of computational humour

Graeme Ritchie
Computing Science

University of Aberdeen
Aberdeen AB24 3UE

gritchie@csd.abdn.ac.uk

Ruli Manurung ∗, Helen Pain
School of Informatics

University of Edinburgh
Edinburgh EH9 8LW

ruli.manurung@ed.ac.uk
H.Pain@ed.ac.uk

Annalu Waller, Rolf Black, Dave O’Mara
School of Computing
University of Dundee

Dundee DD1 4HN
awaller@computing.dundee.ac.uk

rolfblack@computing.dundee.ac.uk
domara@computing.dundee.ac.uk

Abstract

The past 15 years has seen the development of a number of
programs which perform tasks in the area of humour, but
these have been exploratory research prototypes, usually
on a very small scale, and none of them interacted with
users. Amongst those which actually created humorous
texts, theJAPEprogram was probably the most substantial,
but even it was far from being useful for any practical pur-
pose. We have developed a fully engineered riddle genera-
tor, inspired by the ideas in theJAPEsystem, which uses a
large-scale multimedia lexicon and a set of symbolic rules
to generate jokes. It has an interactive user interface, spe-
cially designed for children with complex communication
needs (CCN), so that users can make choices to guide the
riddle generator. The software is robust, stable, and re-
sponds sufficiently promptly that naive users can interact
without difficulty. It has been tested over with real users
(children with CCN), with highly positive results, and is
publicly available for free download.

Keywords: Computational humour, riddles, AAC, joke
generation

1 Introduction

Since 1992, research into computational humour has led
to a number of exploratory implementations, including
some joke-generation systems. However, these have gen-
erally been small exploratory research prototypes rather
than full practical applications. We have developed a
state of the art riddle-generation system which is com-
pletely usable by untrained and naive users, and which
has been evaluated in a systematic manner. Our program
(STANDUP - System To Augment Non-speakers Dialogue
Using Puns) is aimed at young children, and lets them

∗Now at Faculty of Computer Science, Universitas Indone-
sia, Depok 16424, Indonesia.maruli@cs.ui.ac.id

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2007 Goldsmiths, University of London

play with words and phrases by building punning riddles
through a simple interactive user-interface.

A punning riddle is a question-answer joke in which
the answer makes a play on words, as in (1).

(1) What kind of tree is nauseated?
A sick-amore.

What makes these jokes computationally manageable
(and also makes them good illustrative examples of simple
language mechanisms) is their reliance on simple linguis-
tic relations such as homophony and synonymy.

Our target users are children with impaired speech and
limited motor skills (as often results from cerebral palsy).
Suchcomplex communication needs(CCN) can result in
lower levels of literacy than in typically-developing coun-
terparts of the same age (Smith, 2005). This can pre-
vent full involvement in normal forms of language play
(Waller, 2006), leading to poorer skills in language, com-
munication and social interaction (Lindsay and Dock-
rell, 2000). TheSTANDUP software is a “language play-
ground”, with which a child can explore sounds and mean-
ings by making up jokes, with computer assistance. We
conjecture that this will have a beneficial effect on liter-
acy and communication skills, but our project addressed
two more basic research questions:

(i) is it feasible to build an interactive riddle-generator
which can be controlled by children with CCN?

(ii) if so, in what ways do such children use the software?

We have adopted the joke-construction mechanisms
of theJAPEprogram (Binsted, 1996; Binsted and Ritchie,
1994, 1997) as the core of our stable, usable, robust, user-
friendly, interactive system for children with CCN. In this
paper, we will describe what was involved in developing
a working application from the research ideas.

2 Computational Humour

At present, there is no theory of humour which is suffi-
ciently precise, detailed and formal to be implementable.
Hence computational humour has so far largely consisted
of small research prototypes based on mechanisms de-
signed specifically for whatever (narrow) problem was be-
ing tackled (for overviews, see Ritchie (2001b), Hulstijn
and Nijholt (1996), Stock et al. (2002)). Many of these



programs have been generators of simple verbal jokes, and
have been very small studies (often student projects).

Lessard and Levison (1992) built a program which
created a simple type of pun, theTom Swifty. Lessard and
Levison (1993) sketch the workings of a program which
produced some basic forms of punning riddle. Venour
(1999) built a small program which generated simple texts
consisting of a one-sentence set-up and a punning punch-
line consisting of a head noun preceded by an adjective
or a noun modifier. All these used an existing natural
language generator, VINCI (Levison and Lessard, 1992).
The WISCRAIC program (McKay, 2002) produced sim-
ple puns in three different linguistic forms (question-
answer, single sentence, two-sentence sequence).

These systems operated with small amounts of hand-
crafted data, and were not given much serious testing. The
Lessard and Levison projects report no performance or
evaluation, while Venour and Mackay report very small
and not very systematic evaluations. (See Ritchie (2004,
Chap. 10) for a fuller review of these systems.)

As our program is a punning riddle generator,JAPE

(Section 3 below) and the systems reviewed above are
its antecedents. Other work in computational humour
has included a program which could construct amusing
acronyms (Stock and Strapparava, 2003, 2005), a recog-
niser for basic “knock-knock” jokes (Taylor and Mazlack,
2004), a study of how machine-learning techniques could
separate joke texts from non-jokes (Mihalcea and Strappa-
rava, 2006), a very preliminary generator for insults based
on ‘scalar humour’ (Binsted et al., 2003), and a program
which, for a particular class of jokes, selects a punchline
for a joke set-up (Stark et al., 2005). Although some of
these were on a slightly larger scale than the pun gener-
ators described above, all of them were research proto-
types, with no claims to be usable applications.

3 The JAPE riddle generator

TheJAPEprogram (Binsted and Ritchie, 1994, 1997; Bin-
sted, 1996) generated certain classes of punning riddles.
Some of the better examples were the following:

(2) How is a nice girl like a sugary bird?
Each is a sweet chick.

(3) What is the difference between leaves and a car? One
you brush and rake, the other you rush and brake

(4) What is the difference between a pretty glove and a
silent cat? One is a cute mitten, the other is a mute
kitten.

(5) What do you call a strange market? A bizarre
bazaar.

JAPE used three types of symbolic rules (schemas, de-
scription rules, templates) to characterise the possible lin-
guistic structures (Ritchie, 2003). Our variants of these
mechanisms are described in detail below (Section 4).

JAPE stands out from the other early pun-generators
in two respects: it used a large, general-purpose lexicon,
WordNet (Miller et al., 1990; Fellbaum, 1998), rather than

a small hand-crafted one, and a properly controlled evalu-
ation of the output was carried out (Binsted et al., 1997).
The latter study showed thatJAPE-generated jokes were
reliably distinguished from non-jokes, human-generated
jokes were more often deemed to be jokes thanJAPE-
generated jokes,JAPE-generated jokes were funnier than
non-jokes, and human-generated jokes were funnier than
JAPE-generated jokes. Also, aJAPEoutput ((3) above) was
rated the funniest in the data set.

As well as developing the mechanisms for punning
riddle generation, Binsted suggested, in passing, the idea
of using such a program for interactive language teach-
ing. However, theJAPE implementation was still just a
research prototype, and there were certain aspects which
would have to be altered or rebuilt if it was to be used for
practical purposes. These limitations were roughly in the
areas ofusabilityandoutput quality. To be more precise:

(i) The only behaviour of the program was to create
riddles, one after another, with very few parameters
available for variation. Also, these parameters were
internal to the mechanism (e.g. the choice of schema)
and might not make sense to an ordinary user.

(ii) The program worked by exhaustively searching for
words and phrases which would match its schemas
and templates. There was no way to guide the soft-
ware (e.g. to make a joke on a particular topic).

(iii) There was no real user interface – the user (always
a knowledgeable researcher) would invoke the pro-
gram from a simple command interface.

(iv) The search for suitable words, being unintelligent
and exhaustive, could (with a large lexicon) be very
slow; Binsted’s test runs took hours. Hence, the re-
sponse time was useless for interaction with a user.

(v) The jokes were of very variable quality, with the pro-
portion of intelligible jokes being quite small; the
proportion ofgoodintelligible jokes was very small.

(vi) Facilities for comparing words for similarity of
sound were quite primitive. In particular, there
was no provision for approximate matches (near-
homophony) and correspondences between written
and phonetic forms of words were slightly ad hoc.

Of these, (iii) and (iv) had to be remedied for our ap-
plication, and (i) and (ii) were serious drawbacks. The
more we could do about (v), the better, and addressing
(vi) would contribute to this.

4 The joke generator

The STANDUP generator consists of three stages, as in
JAPE; all are implemented in Java. Each stage consists
of instantiating a particular kind of rule:schemas(Sec-
tion 4.1),description rules(Section 4.2) – both supported
by a large dictionary– andtemplates(Section 4.3).



4.1 Schemas

A schema consists of 5 parts:

Header: This attaches a symbolic name to the schema,
and lists its parameters.

Lexical preconditions: This is a collection of constraints
specifying the core items needed for a particular sub-
class of riddle. Items can be eitherlexemes(lexical
entries) orword forms(the orthographic textual rep-
resentation of a word). Constraints can involve syn-
tactic categorisation (e.g. a lexeme is a noun), pho-
netic relations (e.g. two items rhyme), structural re-
lations (e.g. an itemX is a compound noun made up
of componentsY andZ), and semantic relations (e.g.
one lexeme is a hypernym of another).

Question specification: This specifies how certain vari-
ables in the schema are, once instantiated, to be de-
scribed within the question part of the eventual rid-
dle. This, and the answer specification, supply the
input to the description rules (Section 4.2 below).

Answer specification: This is like theQuestion specifi-
cation, but contributes to the answer in the riddle.

Keywords: This lists the subset of the schema’s variables
which will be bound to lexemes. It is used to define
a notion ofequivalencebetween similar riddles: two
riddles are deemed equivalent if they use the same
schema with the same instantiation of the keyword
variables. The generator tracks which instantiations
have been used so far with a particular user, and does
not offer ‘equivalent’ jokes again to the same user.

Informally, the schema’s variables can be instantiated with
values from the lexicon, providing they meet the con-
straints in the lexical preconditions.

There are 11 schemas (for 11 underlying kinds of
joke). A typical schema is given in Figure 1. Following

Header: newelan2(NP, A, B, HomB)
Lexical preconditions:

nouncompound(NP,A,B),
homophone(B,HomB), noun(HomB)

Question specification:
{shareproperties(NP, HomB)}

Answer specification: {phrase(A,HomB)}
Keywords: [NP, HomB]

Figure 1: A typical STANDUP schema

the practice of theJAPE system, relations and proper-
ties are expressed here in Prolog-style (logic-like) nota-
tion, with predicates applied to arguments. Although each
schema was designed using this notation, in the actual im-
plementation the lexical preconditions were compiled into
an expression in the database query language SQL, to fa-
cilitate the finding of suitable variable values within the
lexical database (implemented using the PostgreSQL soft-
ware package1). This compilation was done by hand, al-
though in principle the process could be fully automated.

1
http://www.postgresql.org

Thenewelan2 schema given above could have an in-
stantiation in whichNP= computer screen, A = computer,
B = screen, andHomB= scream(the relationhomophone
means that the two items lie within the current threshold
for phonetic similarity; i.e. “homophones” can be approx-
imate). This could give rise (after two further phases of
processing — Sections 4.2, 4.3 below) to a riddle such as
(6):

(6) What do you call a shout with a window?
A computer scream.

The question specification and the answer specifica-
tion show how the instantiating values have to be
passed on to the next phase (Section 4.2 below), by
embedding the relevant variables within symbolic ex-
pressions which act as signals about what is to be
done with these values. In this example, the question
specification would beshareproperties(computer
screen, scream) and the answer specification would
bephrase(computer, scream) .

4.2 Constructing descriptions

The middle phase of joke generation – constructing de-
scriptions – was not inJAPE-1 (Binsted and Ritchie, 1994,
1997), but was introduced inJAPE-2 (Binsted, 1996; Bin-
sted et al., 1997). It encodes possible linguistic variations,
given core values from the schema instantiation.

The question specification and answer specifica-
tion are handled separately. Each is matched non-
deterministically against a set of description rules. These
rules have a structure roughly similar to schemas, in that
they have aheader, somepreconditions, and an output ex-
pression, thetemplate specifier(Figure 2).

Header: shareproperties(X,Y)
Preconditions:

meronym(X, MerX), synonym(Y, SynY)
Template specifier: [merHyp, MerX, SynY]

Figure 2: A sample description rule

In the example above, the question specification
shareproperties(computer screen, scream)
would match the header for the rule in Figure 2. This
matching causes the data values (computer screen,
scream ) to be bound to the local variablesX,Y of the
rule, ready for the preconditions of the rule to be tested.
These preconditions check further lexical properties
and relations, to determine whether this rule is actually
applicable in this case. (As with schema preconditions,
the implementation represents these expressions in SQL,
to facilitate searching of the lexical database.) This may
involve testing for the existence of further values (e.g.
values forMerX, SynY in the example above), thereby
resulting in the binding of more variables (local to the
rule). For example, starting fromX = computer screen
and Y = scream, the precondition testing might find
(in the lexicon) variable valuesMerX = window and
SynY = shout, thereby satisfying all the conjuncts of
the precondition. If the precondition testing succeeds,
the template specifier is instantiated (using the current



variable values), and these expressions are passed on to
the third stage of joke generation,template filling. Here,
this expression would be[merSyn, window, shout] ).

The answer specification phrase(computer,
scream) matches a very basic description rule which
passes both values on in an expression[simple,
computer, scream] ; this will later be interpreted (at
the template phase) as a concatenation command.

However, the same schema instantiation could have
led, if other values were found forMerX andSynY in the
description rule used for the question, to a slightly differ-
ent variant, such as (7).

(7) What do you call a cry that has pixels?
A computer scream.

Or if a different description rule had been chosen for the
question specification, the joke might have been (8).

(8) What do you get when you cross a shout with a dis-
play?
A computer scream.

Here, the central idea of the joke (captured by the schema
instantiation) is essentially the same in all three versions.

Hence, there are two distinct mechanisms used to
achieve textual variation. The variation illustrated above
involves slightly different phrases which originate from
the same semantic material expanded and realised in vary-
ing ways. These are constructed by this middle phase,
which is a non-humorous set of linguistic rules about how
to build descriptive phrases. (These variations usually oc-
cur in the riddle’s question, but the data for the answer
is also passed through this middle stage, so as to have a
cleaner architecture, and also to allow for possible minor
adjustments being needed in the linguistic form of the an-
swer data, which does occur with some joke types.)

On the other hand, different stereotyped joke-framing
phrases, such asWhat do you get when you cross or
What is the difference between are handled by the
third phase (Section 4.3) below.

4.3 Surface templates

A template is, loosely speaking, a fixed string of text with
some blank slots available for other textual material to be
inserted. Building text by filling data (e.g. phrases) into
a template is a long-standing and much-used approach to
the generation of simple natural language text (Reiter and
Dale, 2000). It lacks linguistic subtlety and can be inflexi-
ble, but it is very convenient when a particular application
(as here) needs to build a few stereotyped forms of text
which vary only in a few well-defined places. We have
three types of template:phrasal, questionand answer.
Phrasal templates put the finishing touches to phrases built
by the previous stage (description construction), for exam-
ple inserting articles or prepositions as needed. A question
template has the broad outline of a riddle question (e.g.
What do you call a ?) with slots for phrases to be
inserted, and an answer template has the broad structure
of a riddle answer (e.g.They’re both ) with slots for
phrases to be inserted.

A template has two parts: theheader and the
body. The expressions provided by the description rules,

such as[merSyn, window, shout] and [simple,
computer, scream] are non-deterministically matched
against the headers of templates of the appropriate type
(question or answer). This causes variables in the tem-
plate header to be instantiated to the values (such as
window, shout). These values are thereby passed into
the body, which is a skeletal textual structure, such as
What do you call a NP(X,Y) . Recursively, the tem-
plate handler matchesNP(shout, window) to a set of
phrase templates, one of which yieldsNP(shout) with a
NP(window), and a further template match producesa
shout with a window. The answer is also produced by
the template module, but for an expression like[simple,
computer, scream] there are no recursive calls – a sin-
gle phrasal template producesa computer scream.

There are various restrictions about which question
templates are compatible with which answer templates,
and also which templates are viable for the values coming
from a particular schema. These combinations are coded
up in a table; these are known as thejoke types, as we
found it useful to characterise types of joke in terms of
underlying rule combinations.

5 Going beyond JAPE

5.1 The lexicon

Using WordNet as its dictionary gaveJAPE several
benefits: many lexical entries (about 200,000), word-
senses grouped into synonym sets, information about hy-
ponym/hypernyms and meronyms; and the data is freely
available in machine-manipulatable form. We therefore
took WordNet as our starting point. However, before de-
signing our system, we carried out consultations with rele-
vant experts: adult users of software for augmentative and
alternative communication (AAC), and speech/language
therapists. This added further requirements to those
needed just for joke generation.

5.1.1 Pictures

Our experts were adamant that children with limited lit-
eracy would need pictorial images to be displayed along-
side words wherever possible. Preferably, these images
should be familiar, and compatible with other uses of im-
ages that the children might have met. Fortunately, two
companies who produce AAC software (Widgit Software
Ltd and Mayer-Johnson LLC) kindly gave us permission
to use their picture libraries. However, we had to expend
a considerable amount of effort manually linking pictures
to appropriate WordNet senses (not just to word forms).

5.1.2 Phonetic representation

In order to construct approximate puns (e.g. matching
rude and road), we needed a representation of the pho-
netic form of each word (orthography, as in WordNet,
can be misleading for punning). We used the Unisyn
pronunciation dictionary2 to add phonetic forms to more
than 115,000 word forms in our lexicon. This allowed
the implementation of a more subtle matching algorithm

2
http://www.cstr.ed.ac.uk/projects/unisyn



for phonetic similarity (near-homophony), based on Lade-
foged and Halle (1988) and minimum edit-cost.

5.1.3 Familiarity of words

It is essential to be able to restrict the available vocabu-
lary to words which the intended users (young children,
perhaps with poor literacy) are likely to know, as there
will be no beneficial effect, and probably some demorali-
sation, if the software produces riddles with words which
are totally incomprehensible.JAPE was liable to produce
riddles using extremely obscure words, such as (9).

(9) What do you get when you cross a vitellus and a sad-
dlery? A yolk yoke.

All the available sources of word-familiarity informa-
tion manifested one (or more) of three problems: assign-
ing ratings (e.g. corpus frequencies) toword-forms, not to
word-senses; sparseness, i.e. covering only a few thousand
words; unreliability or unsuitability for our purposes. To
address this, we applied a hybrid strategy, which there is
not space here to document. This involved assigning rat-
ings ofpriority to several different resources and also scal-
ing the ratings from each resource into a sub-interval of
[0,1]. A word-sense was then assigned a rating (in [0,1])
by the highest priority source for which it had a rating.

TheSTANDUP joke generator has an (adjustable) filter
on the ratings of the lexemes used. This can be used to
limit the unfamiliarity of words used.

5.1.4 Vocabulary restriction

It must be possible to avoid the use of words which
are highly unsuitable for the user population (e.g. swear
words, sexual terminology).JAPE was quite capable of
producing jokes which, while semantically valid, were so-
cially unacceptable for our target audience; e.g. (10).

(10) What do you call a capable seed?
An able semen.

We introduced ablacklist which contains words that
must not be used anywhere by the system. It was popu-
lated by searching the Shorter Oxford English Dictionary
for all entries tagged as eithercoarse slangor racially of-
fensive; a few further entries were added to this list by the
project members based on personal knowledge of words
likely to be deemed unsuitable by teachers. (Despite this,
a teacher objected to one riddle with quite innocent lex-
emes:What do you call a queer rabbit? A funny bunny.)

5.2 Avoiding simple faults

Although theJAPE riddle generator produced structurally
correct texts, some of them were far from acceptable as
jokes. We implemented various heterogeneous improve-
ments, generally formal checks to eliminate configura-
tions of lexemes which would lead to (intuitively speak-
ing) poorer output; that is, we did not so much positively
improve the jokes as selectively close off some of the more
noticeable and formally definable routes to weak jokes.

5.2.1 Shared roots.

Early versions ofSTANDUP produced riddles in which the
same word (or morphological variants of a word) appeared
in both the question and the answer, which tended to spoil
the joke:What do you get when you cross a school princi-
pal with a rule? A principal principle.Using information
from the Unisyn dictionary we were able to associate a
‘root’ field with lexemes, and filter out riddles in which
the same root appeared in question and in answer.

5.2.2 Excessive abstraction.

Many words in our lexicon were ultimately linked (via the
WordNet hyponym/hypernym hierarchy), to very abstract
entries such asentityor human activity. This could cause
riddles to be excessively obscure; for example:What do
you get when you cross an aristocracy with a quality? A
nobility mobility. Here,quality is a hypernym ofmobil-
ity, but this gives an excessively imprecise question. We
therefore placed some of the roots of the hypernym for-
est in a further list of lexemes to be excluded from use.
This was done by subjective judgement of the degree of
abstraction, not by considering jokes which included the
concepts. Although this removed many baffling riddles,
the phenomenon of unworkable abstraction is more sub-
tle. Example (11) is from an early version ofSTANDUP

(before we improved the phonetic matching), and presum-
ably puns ondouble-decker(a two-level bus):

(11) What do you call a cross between a coach and a
trained worker?
A double baker.

The phrasetrained workeris found by a description
rule seeking hypernyms ofbaker. But trained worker, al-
though not as wildly abstract asentity or quality, is still
too vague to invoke the specific notion ofbaker. A hyper-
nym should be used in a riddle question only if it is close
enough in meaning to the target item (here,baker). It is
hard to specify an appropriate criterion of “closeness”.

5.3 Changes in coverage

STANDUP’s set of schemas is slightly different from that
in JAPE. Although we added one further schema (so that
substitutions of a word into another word could happen at
the end as well as at the start), there were fewer schemas
(11 to JAPE’s 15). This is due to two factors. Firstly, we
were able to combine certainJAPE schemas which were
very similar. Secondly, we had to omit some of theJAPE

schema, for jokes such as (3). These schemas rely on in-
formation about what nouns are suitable subjects or ob-
jects for verbs, which, in theJAPE project, was compiled
by hand in a relatively labour-intensive fashion. It was not
clear how best to scale this up automatically (although it
is conceivable that “Word Sketch” data (Kilgarriff et al.,
2004) might help). Given the limited resources of our
project, we had to do without these schemas. This high-
lights the difference in purpose between a research proto-
type and a working system. A prototype is often built to
test whether some particular algorithm or design will work
in principle – a proof of concept. This can be achieved
if the necessary knowledge resources or environment can



be created, even if only on a small scale. Thus, Binsted
demonstrated a valid computational route to riddles such
as (3) (and one or two other verb-based types), but this is
very different from devising a practical means to make a
large scale system which exploits this route.

5.4 User interaction

Perhaps the most significant advance in theSTANDUPsys-
tem is interaction between user and joke generator. There
is a bright, colourful child-friendly GUI, using specially-
designed graphic images, which allows the user to con-
trol the generator through a number of buttons. Thus a
joke can be requested which contains a specified word, is
on a given topic (e.g.animals) or is of a given type (e.g.
where the start of words are swapped round). The user
can browse through past jokes made at previous sessions,
or save jokes to his/her own ‘favourites’. When choosing
a word for a joke, the user can browse through the lexicon.

Response time ranges from under a second to several
seconds. This has been achieved by efficient coding and
by caching (as database tables) lexical information used
by the joke generator, such as near-homophone lists, tu-
ples of lexemes forming spoonerisms, etc., and also in-
stantiations of schemas.

The software has a Control Panel through which a re-
searcher, teacher or carer can customise the system’s be-
haviour (what appears on the screen, what kinds of jokes
are available, what input/output mechanisms are used,
etc.) for individual users, in a very flexible manner.

5.5 Joke telling

Part of the motivation for this work came from the idea
that a child who used a voice-output communication aid
(VOCA) – i.e. using a speech synthesiser in order to
“speak” – might like to incorporate jokes into their con-
versation. However, it would have been over-ambitious
to attempt to incorporate the joke-building functionality
into a VOCA at this stage of development, so we instead
developed a stand-alone system which a child could ex-
periment with. Our software had a built-in text-to-speech
system (using FreeTTS3) for reading messages, button la-
bels, etc. to the user. There was also a facility whereby the
user could, having obtained a joke, “tell” it step-by-step
(question, pause, answer) by getting the software to speak
the text, with the user controlling this process through the
pointing device. This proved to be highly popular with
the users (Section 6 below), as the children could tell their
newly-built jokes immediately without having to switch
over to their VOCA and enter the text.

6 Evaluating the system

For our software, usability and effectiveness for our tar-
get group were central. We therefore evaluatedSTANDUP

with a group of children with CCN (fuller details can be
found elsewhere).

A single case-study methodology was used with nine
pupils at a special-needs primary school. All had cere-

3
http://freetts.sourceforge.net/docs/index.php

bral palsy, and were in the 8 - 13 year age group. Their
literacy levels were rated as eitheremergingor assisted.
Eight of the participants were users of various communi-
cation aids, and could interact with these via touch screens
or, in four cases, head switches. Children were taken
through five phases:baseline testing, introductory train-
ing, intervention, evaluation, post-testing, where the three
central phases involved sessions with the software.In-
troductory trainingconsisted of familiarisation with the
system, aided by one of the project team.Interventionin-
volved the child having a simple task (suggested by the
researcher) to try with the software, such as finding a joke
on a particular topic. The researcher also offered guidance
as necessary. For theevaluationphase, tasks were again
suggested, but no help was given unless absolutely essen-
tial. Sessions were video-taped for analysis, and the soft-
ware logged user-interactions into a disk file. Follow-up
interviews and questionnaires were conducted with school
staff and the participants’ parents.

In the baseline testing, two standard multiple-choice
tests for facility with words were administered: Clini-
cal Evaluation of Language Fundamentals, CELF, (Semel
et al., 1995), in which 27 questions each ask for a choice
of 2 semantically related words from a set of 4, and a
rhyme-awareness test from the Preschool and Primary In-
ventory of Phonological Awareness, PIPA (Frederickson
et al., 1997). We also tested each child’s grasp of punning
riddles, using the Keyword Manipulation Task (O’Mara,
2004), simply to check our assumptions about the level of
the children’s understanding.

The post-testingwith PIPA (testing awareness of
rhyme) showed no signs of improvement (although 6 of
the 9 scored above 80% on both pre- and post-test, sug-
gesting a possible ceiling effect). On the CELF post-test,
all but one of the participants improved, the mean im-
provement being 4.1 out of 27 (paired t-test, two-tailed,
yields t = −3.742, df = 8, p = 0.006). It is difficult to
conduct randomised controlled trials in the AAC field, as
the set of people who use AAC tends to be highly hetero-
geneous. In the absence of any comparison with a control
group, it is hard to infer much from the scores.

All the children reacted very positively to their time
with the STANDUP software. One of the older boys, who
had good verbal abilities, complained about the quality of
the jokes, but made insightful comments on possible im-
provements to the system. The pupils spontaneously used
the software (some without need for prompting), enjoyed
having the software tell the jokes to others, and re-told the
jokes afterwards to parents and others. Children initiated
interaction, some for the first time. This may be because
they felt that the program provided them with novel lan-
guage, and that they could truly control an interaction by
telling a new joke, instead of repeating vocabulary stored
in devices by their therapists/teachers. The computer-
generated jokes became part of an existing class project,
with pupils posting their favourite examples publicly.

Although this was a very small qualitative study, with
no ambitions to show skill improvements over such a
short term, there was anecdotal evidence (from parents
and teachers) that children’s attitudes to communication
had improved. Since it was far from clear at the outset



of our project whether children with CCN would even be
able to use the planned software, the results are not trivial.

7 Discussion

7.1 The outcome

We have designed and built a fully working, large-scale,
robust, interactive, user-friendly riddle generator, with a
number of auxiliary facilities such as speech output and
adjustable user profiles, remedying the limitations ofJAPE

listed in Section 3. It can create millions of jokes, has been
evaluated in a non-trivial way, and is available for down-
load over the WWW. Although we started from theJAPE

ideas, our design and implementation effort was probably
around four to five person-years of full-time work (exclud-
ing the evaluation). The area where further improvement
is most needed is joke quality.

7.2 Creativity

7.2.1 Is the software creative?

Binsted did not claim thatJAPE was creative, but Bo-
den (1998, 2003) discusses it as an example of a cre-
ative program. GivenSTANDUP’s relationship toJAPE,
the question of creativity again arises. Anecdotal evidence
suggests that the program produces novel and acceptable
jokes, but, in the absence of a formal evaluation of the out-
put (cf. Binsted et al. (1997)), no solid claim can be made.
All of these jokes are based on hand-crafted schemas, so
there is no creation of noveltypesof joke. (In the sense of
Boden (1998), such innovation would betransformational
rather thanexploratorycreativity.)

Is STANDUP “more creative” thanJAPE? The devices
described in Section 5 above alter the set of output items
(compared toJAPE’s, or – more realistically – to an earlier
version ofSTANDUP). The modifications in Section 5.2
eliminate poorer items, thereby enhancing the overall out-
put quality. By the formal criteria 1 to 4 (and possi-
bly 5) in Ritchie (2001a, forthcoming), the elimination of
faulty items would improve the program’s ratings, as these
criteria assess theproportion of the output items which
are categorisable as jokes, or which are classed asgood
jokes. Some other changes (Section 5.3) eliminate cer-
tain classes, making the output set less varied. Ritchie’s
proposed criteria do not assess output set variety, so this
would not affect the rating of theSTANDUP program, but
Pereira et al. (2005) hint that less variety in output is a sign
of lower creativity. It is hard to draw firm conclusions here
(except perhaps that these criteria are insufficiently subtle
for making fine comparisons of creativity).

7.2.2 Supporting creativity

Given that the whole project was intended to give support
to the users’ skills development, perhaps a relevant view-
point to consider is the extent to which the software sup-
ports or encourageshumancreativity. This is very hard to
assess. If there were a fuller study to determine the effect
of software usage on a child’s skills (including social ac-
tions), perhaps some educational tests of creative thinking
could be used to assess this aspect.

7.3 Future directions

Further studies. It would be very illuminating to carry
out a long term study of the use of the software by chil-
dren, to obtain some idea of the effects such language play
has on linguistic, communicative or social skills. Com-
parisons with other “language play” educational software
would be interesting, as would studies with other user
populations (e.g. children with autism, second-language
learners).

Improving the system. Because of our requirements
studies (and the limited time available), we implemented
relatively simple facilities for user interaction. These
could be extended, to allow greater participation by the
user in the joke-building process. It would also be inter-
esting to handle other joke types (e.g. ‘knock-knock’ jokes
(Taylor and Mazlack, 2004)).

A testbed for humour. TheSTANDUP software could be-
come a framework to test ideas about humour, in limited
ways. Allowing users to record reactions to jokes would
allow the collection of data about which generated items
work best, a resource for researchers. Alternatively, it
might be possible to embed, in a future version, some con-
jecture about factor(s) which affect funniness, and then
determine the empirical effectiveness of this.

7.4 Conclusions

Computational humour may still be at a basic level, but
the work here represents an significant milestone in its de-
velopment: a complete working system that addresses a
practical application and is accessible for ordinary users.

Acknowledgements

This work was supported by the UK’s Engineering and
Physical Sciences Research Council. The Widgit Rebus
symbols are the property of Widgit Software Ltd and are
used under licence. The Picture Communication Symbols
are the property of Mayer-Johnson LLC and are used un-
der licence. We are extremely grateful to Capability Scot-
land and the staff and pupils at Corseford School for their
help with the evaluation sessions.

References

Binsted, K. (1996). Machine humour: An implemented
model of puns. PhD thesis, University of Edinburgh,
Edinburgh, Scotland.

Binsted, K., Bergen, B., and McKay, J. (2003). Pun and
non-pun humour in second-language learning. InWork-
shop Proceedings, CHI 2003, Fort Lauderdale, Florida.

Binsted, K., Pain, H., and Ritchie, G. (1997). Chil-
dren’s evaluation of computer-generated punning rid-
dles.Pragmatics and Cognition, 5(2):305–354.

Binsted, K. and Ritchie, G. (1994). An implemented
model of punning riddles. InProceedings of the Twelfth
National Conference on Artificial Intelligence (AAAI-
94), Seattle, USA.



Binsted, K. and Ritchie, G. (1997). Computational rules
for generating punning riddles.Humor: International
Journal of Humor Research, 10(1):25–76.

Boden, M. A. (1998). Creativity and Artificial Intelli-
gence.Artificial Intelligence, 103:347–356.

Boden, M. A. (2003). The Creative Mind. Routledge,
London, 2nd edition. First edition 1990.

Fellbaum, C. (1998). WordNet: An Electronic Lexical
Database. MIT Press, Cambridge, Mass.

Frederickson, N., Frith, U., and Reason, R. (1997).
The Phonological Assessment Battery. NFER-Nelson,
Windsor.

Hulstijn, J. and Nijholt, A., editors (1996).Proceedings of
the International Workshop on Computational Humor,
number 12 in Twente Workshops on Language Tech-
nology, Enschede, Netherlands. University of Twente.

Kilgarriff, A., Rychly, P., Smrz, P., and Tugwell, D.
(2004). The Sketch Engine. InProceedings of EU-
RALEX 2004, pages 105–116, Lorient, France.

Ladefoged, P. and Halle, M. (1988). Some major fea-
tures of the international phonetic alphabet.Language,
64(3):577–582.

Lessard, G. and Levison, M. (1992). Computational
modelling of linguistic humour: Tom Swifties. In
ALLC/ACH Joint Annual Conference, Oxford, pages
175–178.

Lessard, G. and Levison, M. (1993). Computational mod-
elling of riddle strategies. InALLC/ACH Joint Annual
Conference, Georgetown University, Washington, DC,
pages 120–122.

Levison, M. and Lessard, G. (1992). A system for natural
language generation.Computers and the Humanities,
26:43–58.

Lindsay, G. and Dockrell, J. (2000). The behaviour and
self-esteem of children with specific speech and lan-
guage difficulties.British Journal of Educational Psy-
chology, (70):583–601.

McKay, J. (2002). Generation of idiom-based witticisms
to aid second language learning. In Stock et al. (2002),
pages 77–87.

Mihalcea, R. and Strapparava, C. (2006). Learn-
ing to laugh (automatically): Computational models
for humor recognition. Computational Intelligence,
22(2):126–142.

Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D., and
Miller, K. (1990). Five papers on WordNet.Interna-
tional Journal of Lexicography, 3(4). Revised March
1993.

O’Mara, D. (2004). Providing access to verbal humour
play for children with severe language impairment.
PhD thesis, Applied Computing, University of Dundee,
Dundee, Scotland.

Pereira, F. C., Mendes, M., Gervás, P., and Cardoso, A.
(2005). Experiments with assessment of creative sys-
tems: an application of Ritchie’s criteria. In Gervás,
P., Veale, T., and Pease, A., editors,Proceedings of the

Workshop on Computational Creativity, 19th Interna-
tional Joint Conference on Artificial Intelligence, vol-
ume 5-05 ofTechnical Report, pages 37–44. Departa-
mento de Sistemas Inforḿaticos y Programación, Uni-
versidad Complutense de Madrid.

Reiter, E. and Dale, R. (2000).Building Natural Lan-
guage Generation Systems. Cambridge University
Press, Cambridge, UK.

Ritchie, G. (2001a). Assessing creativity. InProceed-
ings of the AISB Symposium on Artificial Intelligence
and Creativity in Arts and Science, pages 3–11, York,
England.

Ritchie, G. (2001b). Current directions in computational
humour.Artificial Intelligence Review, 16(2):119–135.

Ritchie, G. (2003). The JAPE riddle generator: technical
specification. Informatics Research Report EDI-INF-
RR-0158, School of Informatics, University of Edin-
burgh, Edinburgh.

Ritchie, G. (2004).The Linguistic Analysis of Jokes. Rout-
ledge, London.

Ritchie, G. (forthcoming). Some empirical criteria for at-
tributing creativity to a computer program.Minds and
Machines. To appear.

Semel, E., Wiig, E. H., and Secord, W. A. (1995).Clinical
Evaluation of Language Fundamentals 3. The Psycho-
logical Corporation, San Antonio, Texas.

Smith, M. (2005). Literacy and Augmentative and Al-
ternative Communication. Elsevier Academic Press,
Burlington.

Stark, J., Binsted, K., and Bergen, B. (2005). Disjunctor
selection for one-line jokes. In Maybury, M. T., Stock,
O., and Wahlster, W., editors,Proceedings of First
International Conference on Intelligent Technologies
for Interactive Entertainment, volume 3814 ofLecture
Notes in Computer Science, pages 174–182. Springer.

Stock, O. and Strapparava, C. (2003). HAHAcronym: Hu-
morous agents for humorous acronyms.Humor : Inter-
national Journal of Humor Research, 16(3):297–314.

Stock, O. and Strapparava, C. (2005). The act of creat-
ing humorous acronyms.Applied Artificial Intelligence,
19(2):137–151.

Stock, O., Strapparava, C., and Nijholt, A., editors (2002).
Proceedings of the April Fools’ Day Workshop on Com-
putational Humor, number 20 in Twente Workshops on
Language Technology, Enschede, Netherlands. Univer-
sity of Twente.

Taylor, J. M. and Mazlack, L. J. (2004). Computationally
recognizing wordplay in jokes. InProceedings of Cog-
nitive Science Conference, pages 2166–2171, Stresa,
Italy.

Venour, C. (1999). The computational generation of a
class of puns. Master’s thesis, Queen’s University,
Kingston, Ontario.

Waller, A. (2006). Communication access to conver-
sational narrative. Topics in Language Disorders,
26(3):221–239.


