An application of neighbourhoods in digraphs to the classification of binary dynamics

Pedro Conceição*, Dejan Govc†, Jānis Lazovskis‡, Ran Levi*, Henri Riihimäki*, Jason P. Smith§

*University of Aberdeen, †University of Ljubljana, ‡Riga Technical University, §University of Nottingham-Trent

Goal

To classify binary dynamics on a network. Our main application is to classification of activity on the Blue Brain Project reconstruction of a small section of a rat’s connectome.

- The representing graph is directed with no self-loops, no multiple edges in the same direction.
- The vertices represent neurons and the edges synaptic connections.

TOPOLOGY AND DIRECTED GRAPHS

We consider the closed neighbourhood (tribe) of a vertex \(v_0 \) (its chief) in a digraph \(G \) as computational units.

We realise it topologically by the directed flag complex: ordered simplicial complex where a \(k \)-simplex is a \((k+1) \)-directed clique in \(G \).

A \((k+1)\)-directed clique is an ordered set of vertices \((v_0, \ldots, v_k) \) such that there is an edge from \(v_i \) to \(v_j \) in \(G \) whenever \(0 \leq i < j \leq k \).

LOCAL PARAMETERS

Our approach is Stay Local (to keep with the times):

- select a small number of tribes that are champions with respect to a sorting parameter;
- restrict to specific subcomplexes of each of the tribes;
- compute the value of a given feature parameter for those subcomplexes.

ACTIVITY AND METHODS

The 8 stimuli activity data: each experiment has a time period of 200 milliseconds and is repeated 557 times for each stimulus in a random sequence \(\implies \) a big matrix of the recorded activity.

Our pipeline extracts combinatorial/topological information from the active subtribes of the selected tribes and creates a feature vector for a support vector machine.

RESULTS AND ANALYSIS

One of our validation tests - “tribes” with same chief but different members.

Classification results

Further reading

 https://arxiv.org/abs/2104.06519
- Associated data and visuals: https://homepages.abdn.ac.uk/neurotopology/neighbourhoods