Active Appearance Models using DXA Imaging for the assessment of Knee OA

JS Gregory1, RJ Barr1, K Yoshida1, S Alesci2, DM Reid1, RM Aspden1
1 Bone and Musculoskeletal Programme, University of Aberdeen, Scotland, UK
2 Wyeth Research USA, Collegeville, PA, USA

Aim

• Can Active Appearance Models (AAM) reflect Bone Mineral Density (BMD) distribution in Dual Energy X-ray Absorptiometry (DXA) images of the knee?
• How effective is the model for evaluating the severity of Knee Osteoarthritis (OA)?

Background

• Active Shape Modelling (ASM) of the hip has previously identified those at greatest risk of developing OA and those who progressed most rapidly to a total hip replacement (THR) before clinical signs were apparent1.
• Active Appearance Modelling (AAM) is an extension of Active Shape Modelling to include the variation of image intensity within a defined shape and describe both in terms of linearly independent variables (modes of variation).
• DXA is used to measure Bone Mineral Density (BMD). DXA images are similar in appearance to a radiograph, with a lower radiation dose, (typically 1-2% of a pelvic radiograph), but also lower resolution.
• We have previously shown that DXA images are as good as radiographs for repeatable scoring of Kellgren-Lawrence grade (KLG). In this study we evaluate their suitability for use with an AAM of the knee in a cohort of volunteers with a range of severities of OA.

Methods

• The Grampian NHS Radiology Information System was used to identify 107 patients who had had radiographs of both knees in the previous 12 months.
• Volunteers were grouped into severity groups based on their KLG
 - 37 controls (Both knees KLG 0)
 - 24 mild OA (KLG 0 & KLG 1)
 - 22 moderate OA (Max KLG 2)
 - 24 severe OA (Max KLG 3 or 4)
• Each volunteer had a knee DXA (GE Lunar iDXA).
• An 85 point AAM was developed using the AAM toolkit (Manchester University, UK)2 and Pearson correlations and one-way ANOVAs were used to test the relationships between mode scores, age and KLG.

Results

• The first 4 modes were significantly correlated with KLG following Bonferroni correction for 15 modes. All were independent of age. [Table 1]
 - A one-way ANOVA (Sidak post-hoc test) found significant differences between the KLG in all 4 modes (P < 0.01).
 - Mode 2 had the strongest relationship with KLG (R = 0.68, P < 0.001). [Figures 1 & 2]
 - Post-hoc analysis of Mode 2 identified significant differences between each pair of KL grades (except 3 and 4).

Conclusions

• AAM incorporates textural changes reflecting BMD distribution into a model of Knee OA in DXA images.
• The resulting AAM is strongly linked to KL grade and may be a sensitive marker for Knee OA severity.

References

1 Gregory JS et al. Early identification of radiographic osteoarthritis of the hip using an active shape model to quantify changes in bone morphometric features: can hip shape tell us anything about the progression of osteoarthritis? Arthritis Rheum 2007 Nov;56(11):3634-43
2 Cootes TF, Taylor CJ. Statistical models of appearance for medical image analysis and computer vision. Imaging Science and Biomedical Eng., University of Manchester, Manchester, United Kingdom. 2001 p. 236-48