Some simulation tools for fast field-cycling NMR and MRI instruments

Pascal Fries^{1,2}, E. Belorizky³, G. Ferrante⁴, G. Galuppini⁵, L. Magni⁵

7 June 12:30pm

¹Univ. Grenoble Alpes, INAC, 38000 Grenoble, France, ²CEA, INAC, MEM, 38054 Grenoble, France, ³Univ. Grenoble Alpes, LIPHY, 38000 Grenoble, France, ⁴Stelar s.r.l., 27035 Mede, PV, Italy, ¹ICDS Lab, University of Pavia, 27100 Pavia, Italy

Conventional NMR and MRI instruments operating at a fixed magnetic field have been enhanced for several decades by generations of skilled physicists and engineers who have worked out their optimal operating conditions. Fast field-cycling (FFC) instruments are not so advanced despite their continuous technical improvements since the beginning of their marketing or pioneer development [1,2]. Here, we present some simulation tools which aim at reproducing the operating conditions of FFC-NMR relaxometers and FFC-MRI imagers in order to determine the instrumental defects, and more generally the unwanted magnetic field perturbations, which can be corrected by post-processing and those which lead to a definitive degradation of the free induction decay and have to be suppressed. Particular attention is given to the time stability of the magnetic field.

References:

[1] G. Ferrante and S. Sykora, Adv. Inorg. Chem. 57, 405 (2005).

[2] D. J. Lurie, S. Aime, S. Baroni, N. A. Booth, L. M. Broche, C.-H. Choi, G. R. Davies, S. Ismail, D. Ó hÓgáin, K. J. Pine, C. R. Physique 11, 136 (2010).