Fast field-cycling magnetic resonance imaging

David J. Lurie ${ }^{1}$, Lionel M. Broche ${ }^{l}$, Gareth R. Davies ${ }^{l}$, Mary Joan Macleod ${ }^{l}$, P. James Ross ${ }^{1}$ and Robert Stormont ${ }^{1,2}$
${ }^{1}$ School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom AB25 2ZD
${ }^{2}$ GE Healthcare, Waukesha, WI, USA
E-mail: d.lurie@abdn.ac.uk
https://www.abdn.ac.uk/research/ffc-mri/

Introduction

Most contrast in conventional MRI arises from differences in T_{1} between normal and diseased tissues. Several studies on small tissue samples have shown that extra information could be obtained from T_{1}-dispersion measurements (plots of T_{1} versus magnetic field), but this information is invisible to standard MRI scanners, which operate only at fixed magnetic field (e.g. $1.5 \mathrm{~T}, 3.0 \mathrm{~T}$). We have developed Fast Field-Cycling Magnetic Resonance Imaging (FFCMRI) to exploit T_{1}-dispersion as a potential biomarker, with the aim of increasing diagnostic potential [1].

Methods

T_{1}-dispersion is typically measured using FFC, by switching the magnetic field rapidly between levels during the pulse sequence [2]. In this way, a single instrument can be used to measure T_{1} over a wide range of magnetic field strengths. FFC-MRI obtains spatially-resolved T_{1}-dispersion data, by collecting images at a range of evolution fields [3].

In our lab we have built a range of FFC-MRI equipment, including two whole-body human sized scanners, operating at detection fields of 0.06 T [4] and 0.2 T [5]. The 0.06 T device uses a double magnet, with field-cycling being accomplished by switching on and off a resistive magnet inside the bore of a permanent magnet; this has the benefit of inherently high field stability during the detection period. The 0.2 T FFC-MRI system (Fig. 1) uses a single resistive magnet which has the advantage of increased flexibility in pulse sequence programming, at the expense of lower field stability during the detection period, necessitating more complex instrumentation.

Figure 1. 0.2 T FFC-MRI scanner at the University of Aberdeen

Results

Our laboratory is investigating a range of applications of FFC relaxometry and FFCMRI. We have demonstrated that FFC relaxometry can detect the formation of cross-linked fibrin protein from fibrinogen in vitro, via the measurement of ${ }^{14} \mathrm{~N}-{ }^{1} \mathrm{H}$ cross-relaxation phenomena [6]. We have also shown that FFC-MRI can detect changes in human cartilage induced by osteoarthritis [7]. Experiments on resected tissues from breast cancer patients have demonstrated significant differences in the dispersion curves between normal and diseased tissues [8]. We have performed in vivo studies on patients with acute ischaemic stroke; FFCMRI images exhibited increased intensity in stroke-affected regions, with maximum contrast typically at the lowest field used $(0.2 \mathrm{mT})$ [9]. We have also begun studies on patients with brain cancer and patients with breast cancer. All human studies were conducted following approval of the relevant Research Ethics Committees and with the informed consent of patients.

Other work has focused on speeding up the collection of FFC-MRI images by incorporating rapid MRI scanning methods along with the use of improved pulse sequences and algorithms [10,11]. Work to improve the hardware and software is ongoing, including the implementation of improved radiofrequency coils [12].

Conclusions

Our work has shown that FFC-MRI has significant potential for the generation and use of novel biomarkers arising from ultra-low field MRI contrast and from low- and ultra-low field T_{1}-dispersion phenomena.

Acknowledgements

This project received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 668119 (project "IDentIFY").

References

1. D.J. Lurie et al. Comptes Rendus Physique 11, 136-148 (2010).
2. R. Kimmich and E. Anoardo Prog.Nucl.Magn.Reson.Spectrosc. 44, 257-320 (2004).
3. D.J. Lurie, P.J. Ross and L.M. Broche, in: "Field-cycling NMR Relaxometry: Instrumentation, Model Theories and Applications"; New Developments in NMR No. 18, Kimmich R., ed., Royal Society of Chemistry, UK, pp 358-384 (2018).
4. D.J. Lurie et al. Phys.Med.Biol. 43, 1877-1886 (1998).
5. L.M. Broche et al. Scientific Reports 9:10402 (2019).
6. L.M. Broche et al. Magn.Reson.Med. 67, 1453-1457 (2012).
7. L.M. Broche, G.P. Ashcroft and D.J. Lurie Magn.Reson.Med. 68, 358-362 (2012).
8. E. Masiewicz et al. Scientific Reports 10:14207 (2020).
9. L.M. Broche et al. $11^{\text {th }}$ Conference on FFC NMR Relaxometry, Pisa, Italy, p6 (2019).
10. P.J. Ross, L.M. Broche and D.J. Lurie Magn.Reson.Med. 73, 1120-1124 (2015).
11. L.M. Broche, P.J. Ross, K.J. Pine and D.J. Lurie J.Magn.Reson. 238, 44-51 (2014).
12. G.R. Davies et al. ISMRM $27^{\text {th }}$ Annual Meeting, Montreal, Canada, p1570 (2019).
