European Network on NMR Relaxometry

Evidence for the role of intracellular water lifetime as a tumour biomarker by *in vivo* Field-Cycling relaxometry

<u>Silvio Aime</u>^a, Maria Rosaria Ruggiero^{a§}, Simona Baroni^{a§}, Stefania Pezzana^a, Gianni Ferrante^b, Simonetta Geninatti Crich^a*

^aUniversity of Torino, Department of Molecular Biotechnology and Health Sciences, via Nizza 52, Torino, Italy. ^bStelar S.r.l via E. Fermi 5, Mede (PV), Italy,

Magnetic resonance imaging (MRI) has had a key role in the field of oncology over the last few decades. The prominent role of MRI relies on its superb spatial and temporal resolution and its diagnostic power arises basically from the differences in the longitudinal (T₁) and transverse (T₂) proton relaxation times between healthy and pathological tissues. However, at the magnetic field strength of the currently available MRI scanners, changes in T₁ do not appear sensitive enough to report on the particular aspects of the tumour stage¹. However, there is widespread opinion that, at low magnetic field strength, the marked increase of R₁ (=1/T₁) observed in biological tissues might be beneficial towards improving the diagnostic potential of MRI in tumour phenotyping²⁻⁴.

Herein it is shown that the *in vivo* acquisition of $1/T_1$ Nuclear Magnetic Resonance Dispersion (NMRD) profiles (from 0.2 to 200mT) fully supports this expectation as the observed R₁s at low magnetic fields (< 0.2 T) allow a clear discrimination between tumours characterised by different metastatic potential.

The T₁-lengthening is associated with an enhanced water exchange rate across the transcytolemmal membrane through an overexpression/upregulation of GLUT1 and Na⁺/K⁺/ATP-ase transporters. It follows that the intracellular water lifetime represents a hallmark of tumour cells that can be easily monitored by measuring T₁ at different magnetic field strengths ranging from 0.2 to 200mT.

References.

1.Johnson, L. M., Turkbey, B., Figg, W. D & Choyke, P. L. Nat. Rev. Clin. Oncol. 11, 346-53 (2014).

2. Pine, K. J., Davies, G. R. & Lurie, D. J. Magn. Reson. Med. 63, 1698-702 (2010).

3. Koenig, S. H., Brown, R. D. 3rd, Adams, D., Emerson, D. & Harrison C. G. Invest. Radiol. 19, 76-81 (1984).

4. Rössler, E., Mattea, C. & Stapf, S. Feasibility of high-resolution one-dimensional relaxation imaging at low magnetic field using a single-sided NMR scanner applied to articular cartilage. J. Magn. Reson. 251, 43-51 (2015).