P-01 - Fast Field Cycling Nuclear Magnetic Resonance: A Novel Tool for the Detection and Characterisation of Breast Cancer

Katie Hanna^a, Ehab Husain^b, Yazan Masannat^b, Rasha Abu-Eid^a, Valerie Speirs^a and Lionel Broche^a ^aUniversity of Aberdeen, Aberdeen, United Kingdom ^bAberdeen Royal Infirmary, Aberdeen, United Kingdom

P-02 - Fast Field-Cycling imaging identifies prostate cancer at magnetic field strength below 200 mT: a study on ex vivo prostate cancer

Vasiliki Mallikourti^a, Amnah Alamri^a, Jenna Gregory^b, Sinclair Dundas^c, Lionel M. Broche^a ^aUniversity of Aberdeen, Aberdeen, United Kingdom.

^bInstitute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.

^cPathology Unit, Aberdeen Royal Infirmary, Aberdeen, United Kingdom.

P-03 - Comparison of pre-processing strategies to inform data-driven classification of small vessel disease patients using field-cycling MRI

Graeme Stewart¹, Vasiliki Mallikourti², James Ross², Lionel M. Broche², Gordon D. Waiter², Mary-Joan MacLeod², Nir Oren^{1,+}, Nicholas Senn^{2,+}

⁺ Indicates joint last author, ¹ School of Natural and Computing Sciences, University of Aberdeen, UK

² School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, UK

P-04 - Susceptibility weighted imaging of the placenta

Amy Turnbull^a, George Hutchinson^a, Penny Gowland^a, ^a SPMIC, University of Nottingham

P-05 - Quantitative Susceptibility Mapping in the Head and Neck: An Optimized and Repeatable Reconstruction Pipeline

Matthew T. Cherukara¹, Karin Shmueli¹ ¹Medical Physics and Biomedical Engineering, University College London, London, UK

P-06 - CSF and Whole Brain Referencing has Mixed Efficacy in Head and Neck versus Whole Brain Quantitative Susceptibility Mapping

Matthew T. Cherukara¹, Karin Shmueli¹ ¹Medical Physics and Biomedical Engineering, University College London, London, UK

P-07 - Impact of reference region choice on statistical analysis in QSM

Patrick Fuchs^a, Carlos Milovic^b, Oliver C Kiersnowski^a, Karin Shmueli^a ^aDepartment of Medical Physics and Biomedical Engineering, University College London, London, UK. ^bSchool of Electrical Egineering, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile.

P-08 - Investigating 'Inverse' Positive Activations in functional quantitative susceptibility mapping (fQSM)

Jannette Nassar¹, Oliver C. Kiersnowski¹, Patrick Fuchs¹, Karin Shmueli¹ ¹Department of Medical Physics and Biomedical Engineering, University College London, UK

P-09 - Comparison of Bipolar Gradient Phase Offset Correction Methods for Quantitative Susceptibility Mapping

Mitchel Lee^a, Fenella Kirkham^b, Karin Shmueli^a

^aDepartment of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom ^bImaging and Biophysics, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, United Kingdom

P-10 - Investigating magnetic susceptibility differences in prostate cancer lesions

Laxmi Muralidharan^a, Manju Mathew^b, Adam Retter^b, Shonit Punwani^b, Karin Shmueli^a ^aDepartment of Medical Physics and Biomedical Engineering, University College London, United Kingdom ^bCentre for Medical Imaging, University College London, United Kingdom

P-11 - Improving phase-based quantitative conductivity mapping using least squares minimum norm solution

Jierong Luo^a, Oriana Arsenov^a, Karin Shmueli^a ^aDepartment of Medical Physics and Biomedical Engineering, University College London, London, UK.

P-12 - Modelling Magnetization Transfer in Segmented ZTE Pulse

Sequences

Oliver Pinna^a, Gareth Barker^a, Tobias C Wood^a ^a Department of Neuroimaging, King's College London, IoPPN, DeCrespigny Park, Camberwell, SE5 8AF

P-13 - Streamlining Sequence Parameter Comparison and Protocol **Optimisation: Leveraging Version Control and Power BI**

Yukai Zou^{a,b}, Mobeen Ali^a, Chris Everitt^c, Angela Darekar^{a,b}

^aDepartment of Medical Physics, University Hospital Southampton NHS Foundation Trust

^bSchool of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton

^cCross Sectional Imaging Department, Radiology, University Hospital Southampton NHS Foundation Trust

P-14 - Machine learning based characterisation of glioma shows best performance with post-contrast T1 and diffusion imaging

Gabriel Oliveira-Stahl^a, Marianna Inglese^{b,c}, Steffi Thust^{d,e,f,g}, Matthew Grech-Sollars^{h, i}

^a Institute of Neurology, University College London, UK

^b Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy

^c Department of Surgery and Cancer, Imperial College London, London, UK

^d Precision Imaging Beacon, Medical School, University of Nottingham, UK

^e Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, UK

^f Radiology Department, Queen's Medical Centre, Nottingham University Hospitals NHS Trust

^g Department of Brain Rehabilitation and Repair, Institute of Neurology, University College London, UK

^h Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK

ⁱ Department of Computer Science, University College London, UK

P-15 - Impact of diffusion-orientation and phase encoding on EPI image distortion and ADC bias

Prashant Nair^a, Rosie Goodburn^a, Bastien Lecoeur^a, Uwe Oelfke^a, Andreas Wetscherek^a ^aInstitute of Cancer Research, 15 Cotswold Rd, Sutton, London

P-16 - Hippocampal subfield segmentation of super-resolved (resolutionenhanced) diffusion MRI validated with high-resolution T1-weighted

imaging

Bastien BRUN^{a,b}, Prince Nwaubani^c, Matteo Figini^d, Bradley Karat^e, Daniel C Alexander^d, Alessandro Colasanti^c, Mara Cercignani^b

^aPolytech Marseille Department of Biomedical Engineering, Aix-Marseille University, Marseille, France ^bCardiff University Brain Research Imaging Center, Cardiff University, Cardiff, United Kingdom ^cBrighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom

^dCentre for Medical image Computing and Department of Computer Science, University College London, London, United Kingdom

^eSchulich School of Medicine and Dentistry, University of Western Ontario, London, Canada

P-17 - Optimisation of T1ho imaging for detecting cardiac fibrosis

Liene Balode^a, Dana Dawson^a, James Ross^a ^aUniversity of Aberdeen, Aberdeen, UK

P-18 - Magnetic Resonance Imaging as a Therapeutic Device: Utilization of Iron Oxide Nanoparticles (SPIONs) for Tumor and Cancer Treatment

Sidharth Vinod^a, Silpamol Jaimon^b, Shazna Ashraf K K^c Amisha Sabu^d ^{a,c}University of Aberdeen, Kings College, Aberdeen, AB24 3FX ^{b,d}Swansea University, Singleton Park, Sketty, Swansea SA2 8PP

P-19 - Numerical Modelling of MRI-related RF Power Deposition of Orthopaedic Implants -How Detailed do the Implant Models have to be?

Michael Taylor^a, R Stephen Nicholas^{b, c} ^aUniversity of Aberdeen, King's College, Aberdeen AB24 3FX Scotland, UK ^bUniversity of Dundee, Nethergate, Dundee DD1 4HN Scotland, UK ^cNinewells Hospital and Medical School, NHS Tayside, Dundee DD1 9SY Scotland, UK

P-20 - Universal Excitation Pulses for a Parallel-Transmit Head Coil at 7T

Yiling Hu^a, Belinda Ding^{a,b}, Shajan Gunamony^{a,c}, David A. Porter^a, Sydney N. Williams^a ^aImaging Centre of Excellence, University of Glasgow, Glasgow, UK ^bSiemens Healthcare Ltd., Frimley, UK ^cMR CoilTech Limited, Glasgow, UK

P-21 - Investigating the impact of complementary microstructural

phenomena on diffusion MRI measurements

Zhiyu Zheng^a, Karla Miller^a, Benjamin Tendler^a, Michiel Cottaar^a ^aWellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom

P-22 - **3D Distortion Compensation of Low Field MR Images Using Soft Registration of a Scan of a 3D Printed Phantom to a Simulated Scan of the Same Phantom**

Harry Lanz^a, Karyn E Chappell^a, Mihailo Ristic^a, John V M McGinley^a ^aImperial College London, Exhibition Rd, South Kensington, London SW7 2BX

P-23 - Do anthropomorphic phantoms enhance compliance with the professional bodies' quality assurance guidelines for MRI in radiotherapy

Meshal Alzahrani^a, David Broadbent^b, Irvin Teh^a, Bashar Al-Qaisieh^b, Adrian Walker^c, Rachel Lamb^c, and Richard Speight^b

^aBiomedical Imaging Science Department, University of Leeds, Leeds, United Kingdom

^bDepartment of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom ^cLeeds Test Objects, Boroughbridge, United Kingdom

P-24 - Ensuring Accurate Stereotactic Planning During Intraoperative MRI through RF Coil QA

James Thorpe^a, Rafal Panek^{a,b}, Paul Morgan^{a,b}

^a Nottingham University Hospitals NHS Trust, Medical Physics, Nottingham, United Kingdom

^b University of Nottingham, School of Medicine, Nottingham, United Kingdom

P-25 - **3D-printable phantoms for quantitative dynamic contrast-enhanced** MRI

M. Sulaiman Sarwar^{a,b}, Antoine Vallatos^{a,c}, Rachaita Podder^c, Cher Hon Lau^d, Adam Waldman^{a,e}, Simone Dimartino^b, Michael J. Thrippleton^{a,e}

^aCentre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK

^bInstitute for Bioengineering, University of Edinburgh, Edinburgh, UK

^cGlasgow Experimental MRI Centre, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK

^dInstitute for Materials and Processes, University of Edinburgh, Edinburgh, UK

^eEdinburgh Imaging, Edinburgh, UK

P-26 - A dual-frequency ¹H/¹⁹F body coil array at 3 Tesla

Paul McElhinney¹, Sarah Allwood-Spiers², Graeme Keith¹, Belinda Ding³, David Brennan⁴, Natasha Fullerton², Celestine Santosh^{2,4}, David Porter¹, Shajan Gunamony^{1,5}

¹Imaging Centre of Excellence, University of Glasgow, Glasgow, Scotland; ²NHS Greater Glasgow & Clyde, Glasgow, United Kingdom; ³Siemens Healthcare Limited, Frimley, United Kingdom; ⁴Aurum Biosciences Limited, Glasgow, United Kingdom; ⁵MR CoilTech Limited, Glasgow, United Kingdom