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 BIC-ISMRM 2023
13-15 September 2023
University of Aberdeen

Welcome

The conference will be held over three days (13th-15th September 2023). The first day
will consist of a Workshop on the highly topical subject of Low-Field MRI. The following
two days will include invited, oral and poster presentations covering all aspects of MRI.
It will bring together scientists, doctors and students concerned with the development
and use of MRI from a broad range of disciplinary and geographical regions, primarily
from the UK and Ireland, but also from around the world.

A fantastic array of speakers have agreed to deliver invited lectures at the conference
and workshop and we are delighted that Professor Fiona Gilbert (University of
Cambridge) will deliver the flagship Bill Moore Lecture at this year’s meeting.

The organisers wish to extend a very warm welcome to all delegates, speakers,
exhibitors and sponsors of BIC-ISRMR 2023 to Aberdeen and to the University of
Aberdeen.

Prof. David J. Lurie
Chair of Local Organising Committee

Local Organising Committee
University of Aberdeen

Prof David Lurie (chair)
Dr Lionel Broche
Mrs Teresa Morris
Dr James Ross
Dr Najat Salameh
Dr Mathieu Sarracanie
Dr Gordon Waiter
Mrs Julie Dixon (Event Organiser)
Ms Cara Nicolson (Event Admin)

This year's conference of the British and Irish Chapter
of ISMRM (BIC-ISMRM) will be held at the King's
College Conference Centre, University of Aberdeen, in
the North-East of Scotland. The theme of the
conference will be "New Horizons in MRI".

The University of Aberdeen has a long history of research in MRI; the first whole-body
MRI scanner was developed here in the late 1970s and the first-ever diagnostic body
scan took place at the University of Aberdeen in 1980. 

https://www.abdn.ac.uk/people/d.lurie
https://www.abdn.ac.uk/people/l.broche
https://www.abdn.ac.uk/people/t.morris
https://www.abdn.ac.uk/people/james.ross
https://www.abdn.ac.uk/people/najat.salameh
https://www.abdn.ac.uk/people/mathieu.sarracanie
https://www.abdn.ac.uk/people/g.waiter
https://www.abdn.ac.uk/people/j.dixon
https://www.abdn.ac.uk/people/cara.nicolson


PROGRAMME



9:15 - 09:45 Registration

9:45 - 10:00 Welcome

10:00 - 11:00 Invited Lectures:  Low field applications                                                                                                  Chair:  James Ross

10:00 – 10:30
Professor Amedeo Chiribiri, King’s College London
 Low-field cardiac MRI: when lower is better

10:30 – 11:00
Professor Mara Cercignani, University of Cardiff
A Journey into Advanced Imaging with Low-Field MRI 

11:00 - 11:30 Refreshment break

11:30 - 12:30
Invited Lectures:  Low field technology                                                                                                                                           
Chair: Mathieu Sarracanie

11.:30 – 12:00
Dr. Tom O’Reilly, Leiden University (NL)
 Accessible low field MRI – Simple and open hardware

12:00 – 12.30
Dr. Lionel Broche & Dr. Najat Salameh, University of Aberdeen
Distilling information from low field systems: from signals to contrast mechanisms

12:30 - 13:30 Lunch Break

13:45 - 14:15 Private Bus to Medical School campus at Foresterhill

14:30 - 16:30

Guided visits to MRI facilities:
(a) Original “Mark-I” 0.04T scanner (1980)
(b) New clinical Field-Cycling Imaging scanner
(c) Low-field MRI laboratory

 16:45 - 17:15 Private Bus back to city centre

19:00 start
Café Scientifique public engagement/outreach event, Aberdeen Art Gallery, Schoolhill, Aberdeen AB10 1FQ
MRI Research in Aberdeen: the past, present and future
Event is free, but pre-booking is required, at this link

20:30 - late
"Get-to-Know-You” gathering/informal get-together. All invited from BIC-ISMRM “Newbies” to seasoned PIs.
Drinks will not be provided (alas)! 
Old School House Pub, Little Belmont Street, Aberdeen AB10 1JG, < 5 minute walk from the Art Gallery.

Wednesday 13th September 2023 - Workshop on low-field MRI

New Horizons in MRI
Full Programme

https://www.ghat-art.org.uk/mark-1-the-worlds-first-whole-body-mri-scanner/
https://www.abdn.ac.uk/ims/research/abic/fast-field-cycling-mri/index.php
https://www.abdn.ac.uk/ims/research/medical-imaging-technologies-2109.php
https://www.aberdeencity.gov.uk/AAGM/plan-your-visit/aberdeen-art-gallery
https://www.explorathon.co.uk/events-programme/cafe-sci-mri-research-in-aberdeen-the-past-present-and-future/
https://www.belhavenpubs.co.uk/pubs/aberdeenshire/old-school-house/
https://www.belhavenpubs.co.uk/pubs/aberdeenshire/old-school-house/


9:00 - 9:30 Registration

9:30 - 9:45 Welcome

9:45 - 10:15

Invited Speaker, Professor David Norris, Radboud University (NL)                                                                              Chair: Richard Bowtell
The Dutch National 14 Tesla Initiative: Approaching the Final Frontier?
Note: this lecture will be streamed to BIC members (and members of other European chapters) as part of the BIC-ISMRM online
educational programme. 

10:15 - 10:45 Refreshment break, posters and exhibits

10:45 - 12:15 Proffered talks session 1:  Low field MRI                                                                                                                                  Chair: Najat Salameh

10:45 - 10:57
PT1-1

James Ross
Progress towards cardiac T1 dispersion imaging using field-cycling imaging 

10:57 - 11:09
PT1-2

Marco Fiorito
Towards cryogen-free SQUID-MRI at ultra-low field

11:09 - 11:21
PT1-3

Amnah Alamri
In-vivo and ex-vivo detection of Colorectal Cancer at ultra-low field using Fast Field-Cycling methods

11:21 - 11:33
PT1-4

Reina Ayde
Comparing different sampling approaches with data-driven reconstruction techniques for low-field fast MRI
acquisitions

11:33 - 11:45
PT1-5

Nicholas Senn
Automated segmentation and quantification of cerebral small vessel disease severity using field-cycling MRI

11:45 - 11:57
PT1-6

Vasiliki Mallikourti
Breast cancer imaging at low and ultra-low magnetic fields using Field Cycling Imaging: a clinical pilot study

11:57 - 12:09
PT1-7

Harriet Kammayani (remote presentation)
African Experience with Ultra-low Field MRI on the REVAMP-TT Study: A Malawian perspective from a Nurse-
Midwife and GATES-ISMRM UNITY Mentee.

12:15 - 13:45
Lunch & posters (BIC Exec Committee meeting will be held over lunch time, in break-out room)
Odd number poster presenters: stand by your poster 13:00-13:45

13:45-14:15

Gold Sponsor talks                                                                                                                                                                                       Chair: David Lurie
GE Healthcare
Gold Standard Phantoms

14:15 -15:00
Bill Moore Invited Lecture, Professor Fiona Gilbert, University of Cambridge                                                                 Chair: David Lurie
Standing on the shoulders of Giants – clinical application of the developments in MR

15:00 0 15:30 Refreshment break, posters and exhibits

15:30 -17:00 Proffered talks session 2: Advances in clinical MRI                                                                                                             Chair: Mara Cercignani

15:30 0 15:42
PT2-1

Francesco Digeronimo
Exploring the Potential of Quantitative Susceptibility Mapping (QSM) to Predict Plaque Rupture Risk: Ex Vivo
Human Carotid Atherosclerotic Plaque QSM Pipeline Optimisation

15:42 - 15:54
PT2-2

Faiz Alqarni
Magnetic resonance imaging measurement of colon length in adults with functional constipation and healthy
controls

15:54 - 16:06
PT2-3

Timothy Mulvany
Identification of Distinct Prognostic Groups of Paediatric Brain Tumours using Unsupervised Learning

16:06 - 16:18
PT2-4

Adrian Tang
T1 Dark, Bright or Fright? : Clinical Fat Saturation techniques in the lateral neck from a Medicolegal perspective

16:18 - 16:30
PT2-5

Elizabeth Shumbayawonda
Liver Magnetic Resonance Imaging, Non-Alcoholic Fatty Liver Disease and Metabolic Syndrome Risk in Pre-
Pubertal Mexican Boys

16:30 - 16:42
PT2-6

Charlotte Swain
Improving the patient experience for paediatrics in Magnetic Resonance Imaging through Play Therapy

16:42 - 16:54
PT2-7

Farahnaz Bashah (remote presentation)
Hemispheric dominance during comforting sound at various intensity levels: Evidence from BOLD fMRI.

17:00 Independent travel to city centre for civic reception and conference dinner

18:30 - 19:30 Civic Reception, Townhouse, Union Street/ Broad Street, Aberdeen AB10 1AQ

19:30 Conference Dinner, Townhouse, Union Street/ Broad Street, Aberdeen AB10 1AQ

Thursday 14th September 2023 - Main conference day 1

https://en.wikipedia.org/wiki/Aberdeen_Town_House
https://en.wikipedia.org/wiki/Aberdeen_Town_House


9:00 - 9:30
Invited Speaker, Dr. Karyn Chappell, Imperial College London                                               Chair: Harish Poptani
 MADI: Harnessing the Magic of the Magic Angle Effect

9:30 - 10:30 Proffered talks session 3:  Preclinical Studies                                                                                  Chair: Harish Poptani

9:30 - 9:42
PT3-1

Christopher Ball
Quantitative Dixon imaging and MR spectroscopy to characterise early alterations in liver fat
in a novel model of diet-induced Metabolic Associated Fatty Liver Disease.

9:42 - 9:54
PT3-2

Tareq Alrashidi
1H MR spectroscopy to evaluate the effect of a choline kinase inhibitor and temozolomide
therapy in a mouse model of glioblastoma

9:54 - 10:06
PT3-3

Hana Lahrech
Transmembrane water exchange in cellular metabolism and its role on T1 relaxation at low
field: towards an invasion/migration theranostic imaging

10:06 - 10:18
PT3-4

Elisabeth Gash
Investigating the effects of hypoxia on tumour vasculature in a chick chorioallantoic (CAM)
model of glioblastoma using MRI

10:30 - 12:00
Refreshment Break & Posters
Even number poster presenters: stand by your poster 11:15-12:00

12:00 - 12:45 BICISMRM Annual General Meeting (open to all conference attendees)

12:45 - 13:45 Lunch & Posters

13:45 - 14:15
Invited Lecture:  Professor Jim Wild, University of Sheffield                                                                                                 
Chair: Lionel Broche
Hyperpolarised xenon MRI - methods and applications in the lungs and beyond

 14:15 -15:30 Proffered talks session 4:  Novel methods & applications                                                           Chair: Lionel Broche

14:15 - 14:27
PT4-1

Dominic Harrison
Lung ventilation 19F-MRI using FLORET ultrashort echo time imaging.

14:27 - 14:39
PT4-2

Mehrsa Jafarpour
Age Related Changes in Peripheral Muscle Metabolism

14:39 - 14:51
PT4-3

Liene Balode
T1𝜌 imaging for detecting takotsubo cardiomyopathy

14:51 - 15:03
PT4-4

Teodora Catargiu
Identifying Brain Calcifications in Down Syndrome Patients: An Analysis Using ZTE-Derived
Pseudo-CT Imaging

15:03 - 15:15
PT4-5

Oriana Arsenov
Rapid In-Vivo Quantitative Conductivity Mapping in the Human Brain Using a Multi-Echo EPI
Sequence

15:15 - 15:27
PT4-6

Gabriel Zihlmann
A High-Performance Clustered Dictionary Search Engine using GPUs

15:30 - 16:15 Refreshment break

16:15 - 16:45 Awards & Closing

Friday 15th September 2023 - Main conference day 2



INVITED
SPEAKERS



Multimodal AI for Integrative Precision Healthcare

Prof Greg Slabaugh, Queen Mary University of London

Recently great strides have been made in medical image computing, thanks to advances in
machine and deep learning along with the availability of large, curated datasets. A patient’s
journey in the healthcare system often results in multiple data streams including images but
also other modalities. This talk explores some of our recent work in multimodal AI that seeks
to leverage these multiple modalities for precision healthcare. I will also touch on some
additional areas of research that may hold promise for medical image understanding and
analysis.

Dr Lionel Broche

University of Aberdeen

discovering the medical applications of FCI, incuding the biological mechanisms
underlying the FCI image contrast
technology developments of FCI
dissemination of FFC imaging using open-source hardware

Talk Title:  Distilling information from low field systems: from
signals to contrast mechanisms

Biography:  I am currently leading the Fast Field-Cycling group at the University of
Aberdeen, which is world-leading in the development of large-band, field-cycling
imaging scanners. We are currently developing Field-Cycling Imaging (FCI), a new
imaging technology derived from MRI that has the unique ability to measure the
dynamics of water and lipid molecules non-invasively. This provides unique insights
on the pathological remodelling of tissues during the progression of diseases, with
exciting applications in medicine. FCI opens access to a new domain of medical
research that remains to be explored.

I am currently conducting clinical research showing that FCI can detect stroke,
breast cancer, brain glioma, liver fibrosis and osteoarthritis, amongst other
pathologies. My research encompasses many disciplines such as electronic
engineering, spin physics, biophysics, physiology, cell biology, system engineering or
electromagnetism, and my current research direction focuses on three research
topics:

https://www.abdn.ac.uk/people/l.broche


Multimodal AI for Integrative Precision Healthcare

Prof Greg Slabaugh, Queen Mary University of London

Recently great strides have been made in medical image computing, thanks to advances in
machine and deep learning along with the availability of large, curated datasets. A patient’s
journey in the healthcare system often results in multiple data streams including images but
also other modalities. This talk explores some of our recent work in multimodal AI that seeks
to leverage these multiple modalities for precision healthcare. I will also touch on some
additional areas of research that may hold promise for medical image understanding and
analysis.

Prof. Mara Cercignani

University of Cardiff

Title:  A Journey into Advanced Imaging with Low-Field MRI

Biography:  Mara Cercignani is Head of MRI at CUBRIC. Her
research focuses on quantitative MRI and its application to
the study of the central nervous system in health and
disease. Best known for her work in white matter imaging, she
has been a Senior Fellow of the International Society for
Magnetic Resonance in Medicine (ISMRM) since 2019, and a
Deputy Editor for Magnetic Resonance in Medicine since
2014. She has published over 180 papers in peer-reviewed
journals.

https://profiles.cardiff.ac.uk/staff/cercignanim
https://www.cardiff.ac.uk/people/view/61030-jones-derek


Multimodal AI for Integrative Precision Healthcare

Prof Greg Slabaugh, Queen Mary University of London

Recently great strides have been made in medical image computing, thanks to advances in
machine and deep learning along with the availability of large, curated datasets. A patient’s
journey in the healthcare system often results in multiple data streams including images but
also other modalities. This talk explores some of our recent work in multimodal AI that seeks
to leverage these multiple modalities for precision healthcare. I will also touch on some
additional areas of research that may hold promise for medical image understanding and
analysis.

Dr. Karyn Chappell

Imperial College London

Talk Title:  MADI: Harnessing the Magic of the Magic Angle
Effect

Biography:  Dr Karyn Chappell is a Postdoctoral Research Radiographer at Imperial
College London. 

Karyn has never chosen the easiest path in her working life. From doing a PhD
involving rummaging around in the dustbin of MRI history to currently preferring not
to predict the future of MRI but creating and building it. Life is never boring! 

Karyn’s research uses magic to make the invisible visible. The ‘Magic Angle
Directional Imaging’ (MADI) technique developed during her PhD harnesses the
Magic Angle effect: visualising the alignment of collagen fibres within tendons,
ligaments, meniscus, and cartilage. Karyn is working with Mechanical Engineers
developing a novel extremity MRI scanner that moves around the patient facilitating
in-vivo magic angle research. 

https://www.imperial.ac.uk/people/k.chappell
https://www.imperial.ac.uk/people/k.chappell


Multimodal AI for Integrative Precision Healthcare

Prof Greg Slabaugh, Queen Mary University of London

Recently great strides have been made in medical image computing, thanks to advances in
machine and deep learning along with the availability of large, curated datasets. A patient’s
journey in the healthcare system often results in multiple data streams including images but
also other modalities. This talk explores some of our recent work in multimodal AI that seeks
to leverage these multiple modalities for precision healthcare. I will also touch on some
additional areas of research that may hold promise for medical image understanding and
analysis.

Talk Title:  Low-field cardiac MRI: when lower is better

Biography:  Prof Amedeo Chiribiri is a recognised world leading expert in cardiac
imaging and cardiovascular MRI. He studied medicine in Turin/Italy and received and
MD from the University of Turin in 2001 and completed specialist training in
Cardiology in 2006 and a PhD in Human Physiology and Experimental Medicine in
2010.

Between 2006 and 2007, he was visiting physician at the German Heart Institute
Berlin (DHZB), Germany, where he specialised in cardiovascular MRI. He works as
Consultant Cardiologist at Guy’s & St Thomas’ Hospital since March 2008. In April
2013, he took up the post as Senior Lecturer in Cardiovascular Imaging at King’s
College London and in August 2013 he became the Director of the Cardiovascular MRI
Service at Guy’s and St Thomas’ Hospital.

He was promoted to Associate Professor (Reader) in Cardiovascular Imaging in August
2018 and to Full Professor (Chair) in November 2020.  Prof Chiribiri’s main clinical and
research interest is cardiovascular imaging, with a focus on cardiovascular MRI and
quantitative imaging. His areas of expertise include the assessment of cardiac
structure and function and tissue characterisation using non-invasive imaging, and on
the application of machine learning techniques for the acquisition and interpretation
of the scans. 

Prof Chiribiri has developed several techniques that enable the non-invasive
assessment of myocardial blood flow (perfusion) and the non-invasive differential
diagnosis between different causes of chest pain. Moreover, Prof Chiribiri is actively
involved in the development and validation of novel experimental models to simulate
physiological and pathophysiological processes and in the development of low-field
MRI scanners for cardiovascular applications.
Speciality:  Cardiology, cardiovascular MRI.

Prof. Amedeo Chiribiri

King’s College London

https://www.kcl.ac.uk/people/amedeo-chiribiri
https://www.imperial.ac.uk/people/k.chappell


Multimodal AI for Integrative Precision Healthcare

Prof Greg Slabaugh, Queen Mary University of London

Recently great strides have been made in medical image computing, thanks to advances in
machine and deep learning along with the availability of large, curated datasets. A patient’s
journey in the healthcare system often results in multiple data streams including images but
also other modalities. This talk explores some of our recent work in multimodal AI that seeks
to leverage these multiple modalities for precision healthcare. I will also touch on some
additional areas of research that may hold promise for medical image understanding and
analysis.

Prof. Fiona Gilbert

University of Cambridge 
Bill Moore lecture

Talk Title:  Standing on the shoulders of Giants – clinical
application of the developments in MR

Biography:  Professor Fiona Gilbert – FRCR, FRCPS, FRCP, FACR, FRSE, FMedSci.

Fiona Gilbert is Professor of Radiology and Head of Department at the University of
Cambridge. Her clinical work and research is focused on imaging breast cancer using
multimodal functional imaging such as MRI and PET to study the tumour
environment and evaluating different modalities for early detection.  

Professor Gilbert has over 250 peer reviewed publications, 5 book chapters and
numerous international conference abstracts.  She was awarded Honorary
membership of Radiological Society of North America, Honorary fellowship of the
American College of Radiologists, the Royal Society of Edinburgh and the Academy
of Medical Sciences and the Gold Medal from the European Society of Radiology.
She is immediate past President of the European Society of Breast Imaging.

https://radiology.medschl.cam.ac.uk/about-us/departmental-staff/academic-staff/professor-fiona-j-gilbert/
https://radiology.medschl.cam.ac.uk/about-us/departmental-staff/academic-staff/professor-fiona-j-gilbert/
https://radiology.medschl.cam.ac.uk/about-us/departmental-staff/academic-staff/professor-fiona-j-gilbert/
https://radiology.medschl.cam.ac.uk/about-us/departmental-staff/academic-staff/professor-fiona-j-gilbert/


Multimodal AI for Integrative Precision Healthcare

Prof Greg Slabaugh, Queen Mary University of London

Recently great strides have been made in medical image computing, thanks to advances in
machine and deep learning along with the availability of large, curated datasets. A patient’s
journey in the healthcare system often results in multiple data streams including images but
also other modalities. This talk explores some of our recent work in multimodal AI that seeks
to leverage these multiple modalities for precision healthcare. I will also touch on some
additional areas of research that may hold promise for medical image understanding and
analysis.

Prof. David Norris

Radboud University, NL

Talk Title:  The Dutch National 14 Tesla Initiative: Approaching
the Final Frontier?

Biography:  I studied Physics at Cambridge and did a Masters in Medical Physics at
Aberdeen. My PhD thesis was entitled “NMR Flow Imaging”, supervised by Jim
Hutchison at Aberdeen. I then moved to the University of Bremen as a post-doc and
later had a tenure-track position. I was head of MR at the Max-Planck-Institute for
Cognitive and Behavioural Sciences in Leipzig before moving to the Donders Institute at
the Radboud University Nijmegen in 2001. I am a past director of the Donders Centre
for Cognitive Neuroimaging and a founding Director of the Erwin L. Hahn Institute at the
University Duisburg-Essen. I am a Past-President of the International Society for
Magnetic Resonance in Medicine and an External Scientific Member of the Max-Plank-
Society. I am the Principal Investigator of the Dutch 14 T initiative (DYNAMIC).

https://www.ru.nl/en/people/norris-d
https://www.ru.nl/en/people/norris-d


Multimodal AI for Integrative Precision Healthcare

Prof Greg Slabaugh, Queen Mary University of London

Recently great strides have been made in medical image computing, thanks to advances in
machine and deep learning along with the availability of large, curated datasets. A patient’s
journey in the healthcare system often results in multiple data streams including images but
also other modalities. This talk explores some of our recent work in multimodal AI that seeks
to leverage these multiple modalities for precision healthcare. I will also touch on some
additional areas of research that may hold promise for medical image understanding and
analysis.

Talk title:  Accessible low field MRI – Simple and open hardware

Biography: I studied physics at Leiden University and got my introduction to MRI by
doing an internship on the human 7T system working on various application of
dielectric materials for manipulating B1 fields, and got the opportunity to pursue a
PhD continuing that work in the same group. Shortly after starting my PhD the idea of
working on a low field MRI system for imaging Hydrocephalus in infants came up and I
was allowed to switch the focus of my PhD to try and bring that system to reality. A
driving factor of our work on low field has always been to make the system available to
as many people as possible for which our vision has been to utilise materials and
methods that are easily sourced and to share our code and designs in an open manner
so that others can replicate, adapt and improve the system for their needs. Last year
we built a replica of our system in Uganda and were joined by people from all over
Africa, as well as the U.S. and South America with the aim of spreading the knowledge
of how to build these systems.”

Dr Tom O'Reilly

Leiden University, NL 



Multimodal AI for Integrative Precision Healthcare

Prof Greg Slabaugh, Queen Mary University of London

Recently great strides have been made in medical image computing, thanks to advances in
machine and deep learning along with the availability of large, curated datasets. A patient’s
journey in the healthcare system often results in multiple data streams including images but
also other modalities. This talk explores some of our recent work in multimodal AI that seeks
to leverage these multiple modalities for precision healthcare. I will also touch on some
additional areas of research that may hold promise for medical image understanding and
analysis.

Dr Najat Salameh

University of Aberdeen

Talk Title: Distilling information from low field systems: from
signals to contrast mechanisms

Biography:  Over the last 20+ years I have developed a strong expertise in MR imaging,
with multidisciplinary skills ranging from fundamental physics to microsurgery in
rodents. I position myself at the interface between Physics and Medicine, easily
navigating between developing new methods for MRI and technology transfer to
clinical and preclinical applications. Over the years, I have designed, implemented,
and validated imaging protocols with very diverse magnetic fields ranging from
0.0065 T to 9.4 T. My area of expertise includes MR elastography in the liver and brain,
thermometry, metabolic imaging, and low magnetic field MRI.

Together with Dr. Sarracanie, we co-founded the Center for Adaptable MRI
Technology (AMT Center) in 2017 when we were assistant professors in Basel, and
have recently (April 2023) relocated our entire low-field MRI platform in Aberdeen, at
the Institute of Medical Sciences. Extensive refurbishment of the Biomedical Physics
building is currently happening, where three of our fixed, low-field scanners along with
2 Field-Cycling whole-body systems will find their new home. This joint effort with me,
Dr. Sarracanie, Dr. Broche, and Dr. Ross will contribute to the largest low-field MR
technology platform ever built with about 900 m2 of lab and office space, at the heart
of the Foresterhill campus.

https://www.abdn.ac.uk/people/najat.salameh
http://www.amt.dbe.unibas.ch/
https://www.abdn.ac.uk/people/mathieu.sarracanie
https://www.abdn.ac.uk/people/l.broche?count=50
https://www.abdn.ac.uk/people/james.ross


Multimodal AI for Integrative Precision Healthcare

Prof Greg Slabaugh, Queen Mary University of London

Recently great strides have been made in medical image computing, thanks to advances in
machine and deep learning along with the availability of large, curated datasets. A patient’s
journey in the healthcare system often results in multiple data streams including images but
also other modalities. This talk explores some of our recent work in multimodal AI that seeks
to leverage these multiple modalities for precision healthcare. I will also touch on some
additional areas of research that may hold promise for medical image understanding and
analysis.

Prof. Jim Wild

University of Sheffield

Talk Title:  Hyperpolarised xenon MRI - methods and
applications in the lungs and beyond

Biography:  I am an MR imaging physicist, my own research focus is the physics,
engineering and clinical applications of MR imaging of hyperpolarised gases in
lungs and other organs. In 2015 our POLARIS group established these modalities as
part of clinical diagnostic imaging in the NHS a world first for hyperpolarised MRI. 

https://www.sheffield.ac.uk/medicine/people/iicd/jim-wild


ORAL
ABSTRACTS



 

PT1-1 

Progress towards cardiac T1 dispersion imaging using field-cycling imaging 
 

James Rossa, Gareth Daviesa, Robert Stormontab, David Luriea, Lionel Brochea, Dana Dawsona 
 
aUniversity of Aberdeen, Aberdeen, UK 
bGE Healthcare, Milwaukee, US 
 
Introduction: Field-Cycling Imaging (FCI) is a novel low-field magnetic resonance technique where the 
external magnetic field, B0, is deliberately and stepwise decreased during the imaging sequence. 
Varying B0 allows the spectrum of the spin-lattice relaxation time T1 to be probed as a function of 
magnetic field, known as T1 dispersion. Our research team have previously shown that T1 dispersion 
has new diagnostic potential in ischaemic stroke and breast cancer without the need for exogeneous 
contrast agents using a home-built FCI scanner with a maximum field strength of 0.2 T. Our previous 
work made use of transceiver coils, however these are impractical for thoracic applications which 
typical employ larger receive-only arrays. Although common at high field, array technology has had 
little development in the low field regime below 20 MHz. In this work we describe the construction of 
a six-channel anterior-posterior torso array and present the first in-vivo FCI cardiac images and T1 
dispersion from healthy volunteers. 
 
Methods: Both the anterior and posterior coils of the array were constructed with three elements 
[each element made of a 2-turn 160 mm loops wound from high-frequency 1699 x 0.020 litz wire 
(Elektrisola Co., Reichshof-Eckenhagen, Germany)] and arranged in a "Venn Diagram" configuration to 
provide a degree of passive geometric decoupling. Additional decoupling and transmit protection was 
achieved by impedance matching through a lattice-balun to custom built low impedance preamplifiers 
(WMA08HA - WanTcom Inc., Chanhassen, MN, USA). The lateral inter-element and axial inter-element 
coupling figures and Q factors were measured using a vector network analyser (Rhode and Schwarz 
Co. Munich, Germany). 
As a proof of concept, we then used the torso array to collect full left ventricular coverage, short-axis 
cardiac images (Figure 1) from n = 20 healthy volunteers with scan parameters: slice thickness = 15 
mm, slice gap = 2 mm, in-plane resolution = 5.75 mm, FOV = 460 mm, bandwidth = 33 kHz, TE = 22 ms 
with spin-echo readout. Images were collected ats four predefined field strengths (200 mT, 20 mT, 2 
mT, 200 μT from which T1 dispersion information was derived for healthy left ventricular myocardium. 
FCI scans were performed twice to assess repeatability of T1 dispersion measurements. Data is shown 
as mean±SD. 
  



 

 
 

 
 
 
 
 
 
 
 
 

 
 
Results: After localisation, the left ventricle was readily visible in all volunteer FCI images. The 
derived mean T1 dispersion values were 0.2 T: 215 ms ± 88, 0.02 T: 149 ms ± 42, 0.002 T: 36 ms ± 
19.1, 0.0002 T: 32 ms ± 14. Repeat T1 dispersion measurements show good reproducibility (Figure 2). 
Our results are in keeping with T1 dispersion measurements observed in skeletal muscle. 
 
Conclusions: We have successfully built a six-channel torso array coil for imaging at 0.2T and below 
and demonstrated the first in-man field-cycling cardiac imaging with T1 dispersion values of healthy 
human myocardium. This paves the way for exploring new applications of field-cycling imaging in 
cardiovascular disease. 
  

Figure 1. Four short-axis views (A: base, B-C: mid 
venticle, D: apex) from a volunteer acquired at 
0.2T using the array coil demonstrating good 
image quality and excellent left ventricle 
delineation. 

Figure 2. T1 dispersion results derived from the left 
ventricle of healthy volunteers. Volunteers underwent 
two scans in order to assess repeatability of T1 
dispersion measurements. 
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Introduction. Over the past decade, a new approach has emerged in the field of MRI, which involves 
the use of ultra-low field (ULF<10mT) scanners. Besides the cost-effectiveness and portability of ULF 
MRI, operating at these low magnetic fields has shown improvements in T1 contrast in some tissues 
[1,2], leading to more efficient diagnostics of various medical conditions, including cancer. The main 
challenge of ULF MRI lies in a detected signal typically orders of magnitude lower compared to clinical-
field MRI, which impacts the signal-to-noise ratio (SNR) in the images. Several methods [3,4] are being 
explored to address this limitation and improve the sensitivity of ULF MRI. The inherent challenge of 
poor sensitivity in ULF MRI can be mitigated by choosing a superconducting quantum interference 
device (SQUID) for signal detection. Various groups [2,5] used SQUIDs at 4.2K employing liquid Helium 
(LHe) cooled cryostats. The use of cryogenic liquid is detrimental to achieving portable and low-cost 
MRI systems. Here we propose our first implementation of a cryogen-free SQUID detector inductively 
coupled to a customised volume MRI RF coil operating at room temperature. We further present our 
first free induction decay (FID) signal acquired using a fully custom-made ULF MRI scanner at 1mT, 
which relies on a conventional inductive reception. 
 
Methods. SQUID sensor: A micrometre-sized low critical temperature Niobium-based SQUID is 
coupled to a larger flux transformer in a current-sensing configuration. This transformer comprises a 
300K RF pickup coil and a 4.2K superconducting input coil positioned in close proximity to the SQUID 
in a washer design. Fig.1a illustrates the cryogen-free cryostat, which relies on a pulse tube cryocooler 
and is used to house the SQUID at a temperature of 4.2K. The magnetic flux seen by the SQUID is 
directly proportional to the one passing through the second-order volume gradiometer used as RF 
pickup coil, illustrated in Fig.1b. In order to estimate the far noise filtering of our detection system, we 
measured the signal detected by the SQUID sensor when emitted by a dipole-like magnetic field coil 
as function of the distance between the RF source and the isocenter of the gradiometer. MRI hardware 
and sequence parameters: A Merrit coil electromagnet fed by a current source generates a B0 field of 
1mT (Fig.2a). The RF field transmission is performed using an 80mm-diameter saddle coil with 5 turns, 
while the RF reception is achieved using a solenoid-based volume gradiometer. Both RF coils are tuned 
to 42.5kHz and matched to 50Ohm. The received signal is amplified using a low-noise preamplifier 
(FEMTO). 0.5L of doped water (NiSO4) was used as a phantom. The FID measurement was obtained in 
5min using the following sequence parameters: FA=90°, TR=0.5s, sampling rate=8kHz, with an 
acquisition window of 200 ms and 120 averages. 
  
Results. Signal detection with a SQUID sensor coupled to a gradiometer at 300K: Fig.1c confirms a 
linear decrease in signal intensity with distance, which translates to effective filtering of far-field noise. 
Measurement of the FID at 1mT: Fig. 2b shows the temporal decay of the demodulated NMR signal 
received by a similar volume gradiometer RF coil (without the SQUID), as well as its frequency 
spectrum before demodulation. The peak in the signal is observed at 42.5kHz, corresponding to the 
expected proton Larmor frequency at 1mT. 
 
 
 
 
 



 

 
 

 
Fig. 1. Schematics of a) the cryostat structure and b) the second-order volume gradiometer. c) Signal detected 

by the SQUID sensor as a function of the distance between the RF source and the gradiometer isocenter. 
 

 
Fig. 2. a) Schematic of the main part of our ULF MRI machine. b) FID signal detected using a volume 

gradiometer pick up coil in a conventional inductive reception, in the time (left) and frequency domain (right). 
 

Discussion. The experiments show that the SQUID sensor, combined with the room temperature 
volume gradiometer, can effectively detect the signal generated by an RF source. In addition, the 
SQUID sensor efficiently rejects far-field noise. Furthermore, we successfully detected an FID signal 
using our custom-made ULF MRI setup, through a volume gradiometer and a low noise preamplifier. 
With an equivalent current noise of 2nA/Hz, the noise introduced by the preamplifier is expected to 
be two orders of magnitude greater than the SQUID’s equivalent current noise. Therefore, we 
anticipate a significantly higher detected SNR when the SQUID is connected to the MRI. 
 
Conclusions. ULF MRI is an emerging and promising technology that has yet to be fully explored. Based 
on our experimental results, an approximately 102 times higher SNR is expected when integrating the 
SQUID technology into our ULF scanner, hence envisioning clinical employment of MRI at such field 
regime. 
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Introduction: Worldwide, Colorectal Cancer (CRC) is the third most commonly diagnosed cancer and 
the second leading cause of cancer-related deaths [1]. An estimated 39% of these cancers are found 
in the rectum [2]. Colonoscopy is currently used for the early diagnosis of CRC. However, because a 
colonoscopy is an unpleasant and invasive procedure, many patients are unwilling to undergo such an 
examination [3]. Currently, CRC diagnosis is expanding beyond structural assessment, and evaluating 
tumour microenvironment using non-invasive imaging has gained increasing importance. Field-Cycling 
is a tool that measures changes in R1 relaxation rate (1/T1) with the magnetic field strength [4,5]. R1 

Nuclear Magnetic Relaxation Dispersion (NMRD) profiles, acquired with field cycling technique, can 
provide promising biological biomarkers non-invasively and without using contrast media, using 
ultralow-field magnetic resonance [6,7]. The aim of this pilot study was to explore potential 
biomarkers in colorectal cancer samples using the field cycling NMR Relaxometry and to test the 
feasibility of the whole body field cycling scanner to characterise rectal cancer. 
Methods: Twenty-eight fresh resected tumour samples and corresponding peritumoral and healthy 
counterparts were obtained via the NHS Grampian Biorepository (tissue request-TR000068), with 
informed consent obtained from all patients. The dispersion profiles were acquired using a 
commercial Field Cycling NMR Relaxometry at a controlled temperature of 37⁰C +/- 0.1⁰C. Field-
Cycling pre-polarised and non-polarised pulse sequences were used. For imaging work (study approval 
number 22/NS/0035), we scanned four patients diagnosed with rectal cancer by using an FCI scanner, 
with four evolution fields ranging from 0.2 T to 0.2 mT and five evolution times. The slice thickness 
was set to 10mm, TE of 21 ms, 20 kHz bandwidth, in-plane resolution of 4.3 mm, with a matrix size of 
100 x 100. The duration of the FCI scan is approximately 45 minutes. 
Results: The difference of R1 values measured between healthy, peritumoral and tumour tissue 
samples is increased with the decrease of the magnetic field from 3.4 to 1.01 MHz and showed a 
significant difference (p<0.0001) between the tissue subtypes. The FCI scans were correlated to the 
clinical MRI images to delineate the ROIs, and multi-fields T1 images were obtained (Fig 1). The in-vivo 
R1 dispersion profiles showed clear contrast between tumour and healthy regions with different 
dispersion shapes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

  
 

Fig 1. Typical FCI data from a patient diagnosed with Locally Advanced Rectal Cancer (LARC). The evolution 
times are reported in ms along the columns, and the evolution fields in mT along the rows. 

 
Discussion: This preliminary study provided the first insights into using FFC-NMR and FCI imaging to 
characterise colorectal cancer. The FFC-NMR measurements were able to discriminate tumours from 
peritumoral and healthy tissues in all 28 cases. This work was extended to in vivo imaging, and the 
preliminary results were reported. Although the primary source of the signals is not well defined yet, 
previous studies have reported that (R1 = 1/T1) is related to changes in molecular dynamics within 
tumour tissues, and the water exchange rate across the plasma membrane is a distinctive feature that 
distinguishes healthy from tumour cells [7,8]. 
Conclusions: This work showed a potential new biomarker of colorectal cancer based on R1 dispersion 
curves -extended to low magnetic fields -below 3.4 MHz-. Furthermore, this work is extended to in 
vivo imaging, and we reported the preliminary results of using our whole-body 0.2 T FCI scanner to 
assess if FCI can characterise rectal lesions. 
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Introduction: Low magnetic field (LF) MRI is currently gaining momentum as a complementary, 
flexible, and cost-effective approach to MRI diagnosis [1]. A common limitation of LF MRI lies however 
in the lower available spin polarization yielding low Signal-to-Noise-Ratio (SNR) images. During the 
image acquisition process, multiple averages (NA) can be used to boost the SNR by roughly √NA, 
although at the cost of prolonged acquisition times, compromising patient comfort and hindering the 
relevance of LF MRI for clinical routine. Lately, advanced reconstruction techniques based on deep 
learning have shown promising results accelerating acquisitions when combined with k-space down-
sampling. Undersampling is commonly done using a binary sampling scheme (mask) usually favoring 
low spatial frequencies (i.e., defining contrast and the overall object shape) in an image, at the expense 
of high frequencies containing small features (i.e., details) [2]. Leveraging low (or very low) NA without 
omitting k-space information constitutes another means to accelerating acquisition times, yet with a 
direct penalty on SNR. In this case, deep-learning algorithms can be used to perform a denoising task 
[3, 4] to boost SNR. In this work, we evaluated those two different sampling strategies for accelerated 
MR acquisition at 0.1 T using a data-driven DL reconstruction technique. 
 
Methods:  

Sampling strategies 

Maintaining constant acquisition time, 30% sampling of a 
full 3D k-space with a Gaussian probability density function 
was challenged with low averaging of a fully sampled k-
space (Fig. 1). Details on the investigated sampling masks 
are given below: 
A) Undersampling (US): it consists of a binary mask applied 
to the phase encode 1 and 2 directions (readout always 
fully sampled) following a gaussian-like sampling pattern. 
30% of k-space is sampled and each sampled k-space line 
is acquired with a maximum number of averages Nmax. 
B) Uniform averaging: every k-space line is averaged 
equally N times = 0.3 x Nmax. 

 
Training  
A total of 7 datasets of 3D MR in-vivo human wrist were acquired at 0.1 T (4.2 MHz) in a compact 
biplanar MRI system [5] after informed consent was obtained. The following acquisition parameters 
were used: matrix = [128 x 128 x 15], voxel size = [1 x 1 x 2.9] mm3, TE/TR = 7/13.9 ms, and NA = 10 
(acquisition time = 4min25s). Each average was individually stored in a fourth dimension, allowing 
retrospective manipulation of k-spaces to generate images according to different masks. The 
maximum SNR of the training set is 56.0±7.0. Accelerated acquisitions by a factor of x3.3 were 
simulated according to the two sampling schemes described. Finally, two residual U-net models were 
trained on pairs of full and down-sampled MR images using the RMSProp optimizer with the mean 
squared error as a loss function. Data augmentation was applied to prevent overfitting. 
 

Figure 2: Two down-sampling mask. (A) 30% 
of k-space lines are sampled with the maximum 
averaging Nmax. (B) All the k-space lines are 
averaged equally: 0.3xNmax. All scales are 
normalized number of averaging. 



 

 
 
Testing 
The reconstruction performances of the two models were evaluated on two sets of data (30 2D MR 
images) of in-vivo human hand/wrist that were acquired with the same acquisition parameters 
described above with comparable overall maximum SNR of 56.9±1.7. The reconstructed images were 
evaluated using the structure similarity index (SSIM), normalized root mean squared error (NRMSE) 
and Peak SNR (PSNR) as metrics.  
 
Results: Figure 2 compares residual U-net reconstruction in a selected image sample in the human 
wrist. Despite an improvement in edge sharpness with DL reconstruction, US sampling inherently 
exhibits filtered high frequencies (i.e., blurring). In contrast, uniform sampling followed by a denoising 
model demonstrates higher details (edge) preservation and good fidelity to the reference image. 
Quantitatively, uniform averaging shows better metrics (cf. table 1).  
 

Table 1: Quantitative results of retrospectively 3.3-
fold down-sampled test data using the two different 
masks and reconstructed with the corresponding 
residual U-nets. 
 
Figure 2: Reconstruction performance of residual U-
net on in-vivo human wrist MR data. The first row is 
the Fourier transform of retrospectively accelerated 
(x3.3) acquisition according to the two masks. The 
second row shows the reconstructed magnitude images 
using the corresponding trained models. 

 
Discussion: With a purely data-driven reconstruction approach, uniform low averaging appears to be 
more advantageous than undersampling omitting high spatial frequency lines in k-space. Data-driven 
approaches like the one used in this study (residual U-net) are typically useful for removing artifacts 
(aliasing, noise etc.). However, lost information such as high spatial frequencies cannot be fully 
recovered. Therefore, noisier, uniform sampling with low averaging seems more beneficial than US 
when a data-driven deep learning approach is used for reconstruction at low-SNR regimes. 

Conclusions: This study examined two distinct down-sampling techniques, which were subsequently 
followed by a residual U-net deep learning reconstruction. The findings indicate that uniform sampling 
approach is more advantageous than undersampling when using a data-driven reconstruction 
approach. 
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Introduction: Cerebral small vessel disease (SVD) is associated with increased stroke risk and 
contributes to cognitive decline in ageing populations [1]. New clinically viable approaches are now 
needed to realise the potential of non-invasive imaging to routinely monitor changes to the severity 
of SVD in patients. Field-cycling imaging (FCI) is an emerging whole-body MRI technology being 
developed at the University of Aberdeen [2]. FCI provides unique access to underlying tissue features 
by varying the magnetic field during acquisition, at strengths up to 10,000 times lower than 
conventional fixed-field MRI. The low-field nature of FCI means that it has the potential to be 
developed towards a variety of accessible and impactful clinical applications. The aim of this 
preliminary work was to investigate the feasibility of FCI to quantify SVD severity when combined with 
a fully automated segmentation algorithm. 
 
Methods: An automated segmentation approach has been developed to segment regions of white 
matter changes associated with SVD from surrounding white matter using R1 images generated at 0.2 
mT from FCI (see Fig. 1). Tissue label masks are created for brain tissue, ventricle, and small vessel 
disease. The automated approach was written in MATLAB (MathWorks, USA). A constrained k-means 
clustering based approach was implemented to utilise the inherent contrast between hypointense 
regions of R1 corresponding to SVD white matter changes and hyperintense regions of R1 
corresponding to surrounding white matter (see Fig. 1: R1 map). A multi-step process is used to 
generate additional tissue masks which are then used to differentiate SVD from cerebrospinal fluid 
(CSF) regions by accounting for the overlapping isointense R1 values. 

 

 
Fig. 1. Automatic segmentation overview: 1) Images are created from multi-field FCI data prior to automated 
tissue segmentation, 2) automated multi-step approach used to segment different brain tissue regions to extract 
final brain tissue label image. 
 

 

The study was approved by the North of Scotland Research Ethics Committee (21/NS/0128). A total 
of 9 data sets were included from the first patients recruited to the study, who attended an initial 3T 
MRI (Philips 3T dStream) and FCI scan (N = 6) and repeated scans after 30 days (N = 3).  



 

FCI images were acquired across four evolution fields of 0.2, 2, 20 and 200 mT, 5 logarithmically spaced 
evolution times, TE of 16 ms, matrix size of 90 x 90, in plane resolution of 3.1 mm, and slice thickness 
of 10 mm. Prior to generation of R1 maps at each evolution field, FCI images were de-noised using a 
pretrained denoising convolutional neural network contained within MATLAB. A separate brain tissue 
label was generated from 3T MRI data using an existing automated approach to segment regions of 
white matter hyperintensity [3], and co-registered to FCI images using a landmark-based approach. 
 
Results: Mean and range of Dice coefficients were obtained for brain matter inclusive of SVD (0.89, 
0.86 – 0.93), ventricle (0.91, 0.81 – 0.95), and SVD only (0.52, 0.27 – 0.73), (See Fig. 2). Visual inspection 
of the SVD tissue label shows regions of both false positive and false negative disagreement. A 
significant Pearson correlation was obtained between SVD brain fractions (R = 0.861, P = 0.003). 
 

 
 

Fig. 2.  Comparison of generated tissue labels: A1 and A2 correspond to the initial and repeated scans from a 
single participant respectively. Row 1) R1 maps generated at 0.2 mT. Row 2) Tissue label generated from FCI 
data with brain matter (yellow), ventricle (blue), and SVD (red). Row 3) tissue label generated from 3T MRI 
data. Row 4-6) Dice coefficients generated from comparison of row 2 and 3 label images for brain matter 
inclusive of SVD, ventricle and SVD only. 
 
Discussion: FCI combined with an automated segmentation approach has the potential to inform 
radiological assessment of SVD severity and monitor disease progression. The preliminary results 
obtained from this study demonstrate the feasibility of FCI to differentiate SVD changes to white 
matter and inform automated segmentation of these regions. Differences between tissue labels 
generated from FCI and 3T MRI may partly be underpinned by different sensitivity of imaging 
approaches to underlying pathophysiological processes involved with SVD changes to white matter 
[4]. Future work is required to interrogate the sensitivity of FCI to underlying SVD processes and 
develop further the automated segmentation method presented here. 
 
Conclusions: The preliminary results demonstrate the feasibility of FCI to inform automated seg-
mentation of SVD brain changes and quantification of disease severity. 
 
Acknowledgements: We would like to thank the participants who took part in this study. The study is 
funded by Chief Scientist Office research grant TCS/19/44. Nicholas Senn’s research position is funded 
by University of Aberdeen Development Trust SCIO Fund. 
 
References 

1. L. Østergaard, et al. J Cereb Blood Flow Metab 36(2), 302-25 (2016). 2. L.M. Broche, et al. Sci Rep 9, (2019) 
3. J.M.J Waymont, et al. J Int Med Res. 48(2) (2020). 4. M.S. Stringer, et al. Transl. Str. Res. 12, 15–30 (2021)  

  



 

PT1-6 

Breast cancer imaging at low and ultra-low magnetic fields using Field Cycling Imaging: a 
clinical pilot study  

 
Vasiliki Mallikourti1, P. James Ross1, Oliver Maier2, Katie Hanna3, Ehab Husain4, Gareth R. Davies1, 
Gerald Lip4, Hana Lahrech4, Yazan Masannat5,6, Lionel M. Broche1 
 

1Aberdeen Biomedical Imaging Centre, University of Aberdeen;  
2Institute of Medical Engineering, Graz University of Technology, Graz, Austria 
3 Institute of Medical Sciences, University of Aberdeen 
4University Grenoble Alpes, Inserm U1205, BrainTech Lab 
5Breast Unit, Aberdeen Royal Infirmary 
6School of Medicine, Medical Sciences and Nutrition, University of Aberdeen   
 
Introduction: Standard clinical MRI in breast cancer has limitations in determining the tumour 
subtypes, and cannot detect tumour cell infiltration generally localised in tumour margins. Field-
Cycling imaging (FCI) [1,2] is a novel modality that can image over a range of low magnetic field 
strengths through rapid switching between magnetic field levels. This allows measuring the field-
depended changes of the longitudinal T1 relaxation time (or R1=1/T1), known as nuclear magnetic 
relaxation dispersion (NMRD). NMRD profiles provide information on molecular dynamics exploiting 
novel biomarkers that recently have been shown in breast cancer and glioma models related to 
tumour invasion migration [3,4]. The goal of this clinical study is to define the specificity of FCI as 
medical imaging modality in breast cancer diagnosis and its precision in tumour delineation. 
Methods: Twenty-six females with breast cancer were recruited from January 2019 to March 2022 
(ethics approved by NoSREC, number 19/NS/0064). Ten patients completed the study and were 
diagnosed with Invasive Ductal Carcinoma (n=1), Ductal Carcinoma In Situ (DCIS, n=5), borderline 
phyllodes (n=1) and mixed phenotypes (n=3). One patient presented two distinct lesions at histology 
and each lesion was treated separately for the analysis (n=11 data in total). 
FCI was performed with four evolution fields (200, 65.8, 22 and 2.3mT) using a single-slice inversion 
recovery spin echo sequence with five evolution times. The slice thickness was set to 10mm and the 
in-plane resolution to 2 to 4mm, depending on the FOV with matrix size of 128x128. The total 
duration of the FCI examination was 45min. Clinical imaging including ultrasound, mammography, 
and in some cases MRI at 1.5T were used for comparison. Histology analysis was considered here as 
gold standard imaging and was used for validation. Tumour sizes in FCI images were calculated using 
ImageJ. Tumour sizes were compared to histology, using the ratio of tumour size from image divided 
by tumour size from histology and reported in %.  
Data analysis was done in MATLAB using in-house software [5]. R1 quantification was obtained using 
the exponential model derived from the Bloch equations. The R1 NMRD profiles were fitted using a 
power law model (1/T1=αB−β) to derive the slope of the dispersion (β parameter) at fields below 
(βL) and above (βH) 22 mT. The amplitude of the quadrupolar peak at 65.8mT was estimated by 
subtracting the baseline provided from interpolation following the power law model. NMRD 
dispersions were extracted from three ROIs: tumour from the diseased breast, adipose and 
glandular breast tissue from the contralateral breast.  
Results: The tumour region measured by FCI exhibited hyper-intense regions at low field strengths 
(Fig.1). FCI tumour sizes were found close to those obtained from histology (size measurement from 
histology: 37.0 ± 12.0, measurement ratio: 88.3±42.8% in mammography, 55.6 ± 42.7% in US, 92.6 ± 
32.5% in MRI, 101.9 ± 20.1% in FCI). This was not the case for the other imaging modalities for which 
6 out of 8 DCIS cases were severely under-estimated.  
Tumour R1 values were significantly lower from glandular and adipose tissue (p<0.05). The R1 
contribution from 14N-1H quadrupolar coupling at 65.8 mT was significantly larger in tumours than in 
adipose breast tissues (0.85 ± 0.44 VS -0.07 ± 0.49, p<0.001) (Fig.2a).  
 

https://www.abdn.ac.uk/smmsn/


 

 
 

 
Fig. 1. Typical FCI data from a patient presenting with invasive lobular carcinoma mixed with DCIS. The 
evolution times are reported in ms along the columns and the evolution fields in mT along the rows. 

 
Further segmentation of the tumour NMRD profiles showed significant differences between invasive 
and non-invasive tumours (Fig. 2b). These appear both in R1 values at 2.3 mT (9.6 ± 1.8 in non-
invasive vs 6.3 ± 2.4 in invasive, p<0.05) and in the low-field slope βL of the R1-NMRD (0.17 ± 0.07 in 
non-invasive vs 0.06 ± 0.08 in invasive, p<0.05. 

 

 
Fig. 2. Averaged R1-NMRD for (a) all the patients (n=10), with ROIs taken in the adipose tissues (blues), 
glandular tissues (green) and tumours (red), and for (b) the ROIs in tumours, where invasive (n=4) and non-
invasive tumours (n=6). are separated.  
 
Discussion This is the first time that R1-NMRD profiles are extracted from in vivo breast cancer 
patients. Despite the low spatial resolution, FCI located accurately the lesions and provided non-
biased size estimates, as validated by histology. R1- NMRD profiles successfully discriminated between 
tumours and healthy tissues. The slope of the dispersion and R1 at 2.3 mT discriminated between 
invasive and non-invasive tumours suggesting rapid transmembrane water exchange and water 
molecular dynamics in case of invasion [3]. 
Conclusions: FCI shows high potential for breast tumour detection without contrast agent with 
potentially better delineation in DCIS. We also found potential biomarkers of breast cancer 
invasiveness, which is of high interest for surgery planning and could improve the outcome of 
patient treatment if confirmed. 
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Introduction: Infants born preterm, small for gestational age, or who face malnutrition, neglect, or 
other forms of adversity are at risk for delayed, impaired, or sub-optimal neurodevelopment. These 
risks are disproportionately represented in low- and middle-income countries such as Malawi where 
the availability of neuroimaging with conventional high field MRI scanners is extremely sparse. The 
very recent development of ultra-low field mobile scanners which are powered off standard domestic 
ring-mains power offers an affordable, scalable method for directly evaluating the efficacy of 
interventions to improve infant and child health and neurodevelopment [1]. ISMRM is collaborating 
with the Bill and Melinda Gates Foundation to optimise the design, implementation, and distribution 
of one such device specifically for use in low- and middle-income countries [3]. To facilitate these aims, 
a Mentor programme was introduced at the 2023 Annual Meeting in Toronto. We present and share 
the experience of one of these Mentees who is a nurse with additional midwife expertise and who 
routinely uses ultra-low field MRI to image infants in Malawi in the context of the REVAMP-TT trial 
[2,4,5] 
Methods: The randomized controlled trial of the effect of intravenous iron on anaemia in Malawian 
pregnant women (REVAMP) is a two-arm confirmatory individually randomised trial set in Blantyre 
and Zomba districts in Malawi. The trial will randomise 862 women in the second trimester of 
pregnancy with a capillary haemoglobin concentration below 100.0 g/L. The study comprises two 
arms: (a) intravenous FCM (20 mg/kg up to 1000 mg) given once at randomisation, and (b) standard 
of care oral iron (65 mg elemental iron two times per day) for 90 days (or the duration of pregnancy, 
whichever is shorter) provided according to local healthcare practices. Recruited patients have 
neuroimaging as part of the neurodevelopment sub-study to provide baseline data from which to 
evaluate the effects of intervention. 
Results: Study cohort includes 3- and 12-months old sleeping babies/infants. Harriet's roles with these 
babies and their mothers are diverse including:  Obtaining Informed consent from participant to 
undergo MRI scanning.  Signing consent forms for all the participants undergoing MRI. Assuring the 
mothers on the safety of the Hyperfine Machine. Preparing the babies to undergo scanning by putting 
them in a meg-vac immobilizer and conducting MRI Scans [Fig 1]. Positioning the babies in the 
Hyperfine Machine. Uploading the images after MRI assessment Assisting in EEG Assessment. Follow 
up on participants who missed the scheduled assessments. Completion of hard copy of case report 
forms after every procedure. 
Discussion: Early experience with Hyperfine swoop was presented at the ISMRM-UNITY meeting in 
Toronto 2023 ISMRM annual meeting via results from an online questionnaire conducted by PATH [6]. 
Harriet's own experience adds significant and specific detail to this from a Malwian perspective with 
specific challenges identified as: Putting babies to sleep to conduct the MRI scans since we do not 
sedate them. The machine produces a loud noise which wakes the babies making it difficult to 
continue with the scans. The machine does not have power backup of which a minor power 
interruption causes the need to repeat the scan. Coil design is closed and does not allow ventilation 
which causes the babies to wake up. Getting used to the scanner and full training since it is a new 
machine to be used in Malawi. 



 

 
 

 

 
 

Fig. 1. Patient positioning on the Hyperfine Swoop 
 
Conclusions: Although Harriet was unable to take advantage of her funding to attend ISMRM 2023 
(Toronto) in person, the UNITY mentor-mentee relationship has enabled her to share her experience 
with her mentor in the UK and through this collaboration, to submit the same experience to a wider 
audience through conference presentations in the UK and extend such collaboration and mutual 
exchange. 
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Introduction: Carotid artery disease (CAD) is a high-risk factor for acute ischaemic stroke (AIS), with 
plaque rupture estimated to account for 15-20% of AIS cases [1]. Current CAD clinical assessment 
relies on the quantification of stenosis percentage, an anatomical measure which may be insufficient 
to predict rupture risk [2]. Quantitative susceptibility mapping (QSM) can reconstruct magnetic 
susceptibility (χ) distribution maps via physics-based post-processing of the phase component of the 
MRI signal [3]. In porcine arterial tissue, χ is sensitive to the presence of collagen: a critical load-bearing 
microstructural component which may play a key role in plaque stability [4-5]. High-resolution and 
accurate plaque QSM can facilitate investigations into tissue microstructure which could inform 
rupture risk. However, robust QSM of heterogeneous tissues, such as atherosclerotic plaques, is 
challenging due to large intra- and inter-sample composition variability and the presence of both low-
signal regions and strong χ sources. The quality and accuracy of χ maps is heavily influenced by the 
processing pipeline used [6]. Therefore, this study focused on optimising a QSM pipeline for ex vivo 
human carotid atherosclerotic plaque images acquired using an ultra-high field system.  
Methods: Fresh atherosclerotic plaques (n=7) were obtained from carotid endarterectomy surgeries 
at St. James’s Hospital, Dublin and cryopreserved. After thawing, specimens were imaged individually 
using a 7T system, with specifications and protocol summarised in Table 1. The samples presented in 
this study are part of a larger dataset, for which diffusion tensor imaging, mechanical and histological
characterisation results were previously published [7]. 
Three plaques at different American Heart Association 
defined disease stages, type II, IV, and VI [8], were chosen 
for the QSM pipeline optimisation to account for 
morphological variability. A Two-Pass Masking (TPM) 
pipeline was used for QSM [9], see Fig. 1(a). Initial pipeline 
settings were defined based on a previous study [4]. The 
effects of different algorithms and settings were 
evaluated individually in a step-by-step process see Fig. 
1(b). Where a particular method or parameter provided 
significant improvements in terms of reductions in 
streaking artefacts (SAs) and/or residual background fields 
(RBFs), the pipeline was adjusted to include this setting 
before proceeding to the next step. For example, 
Laplacian phase unwrapping performed best and was 
therefore adopted for all subsequent evaluations. For 
each step, images at each stage of the QSM pipeline were 
visually analysed and compared. χ difference maps were 
also compared for noise masking.  
 

Table 1. Data Acquisition Specifications 
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Container 15 mL Falcon Tube 
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Manufacturer Bruker (Ettingen, 
Germany) 

Model BioSpec 70/30 USR 
Field Strength [T] 7 

Bore Type Horizontal 
Bore Diameter [cm] 30 

Number of Coil 
Channels 8 
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Sequence Type T2
*-w 3D Multi-Echo GRE 

Averages 4 
Echoes 4 

Repetition Time 
[ms] 150 

1st Echo Time [ms] 4.8 
Echo Spacing [ms] 7.68 

Flip Angle [°] 30 
Field of View [mm] 16 x 16 x 16 
Matrix Size [voxels] 128 x 128 x 128 

Resolution [μm] 125 x 125 x 125 
Acquisition Time 2 h: 44 min 



 

 

Results: Optimisation results are summarised in Fig. 1(b) below. Using the mean of the inverse noise 
map distribution as the noise masking threshold provided the least amount of SAs and no visible 
discontinuities. Mask erosion caused unwanted map discontinuities without reducing SAs. Both 
PRELUDE 3D and Laplacian were able to successfully unwrap the images; however, Laplacian was 
much faster. PRELUDE 2D showed signal discontinuities in higher-noise regions. LBV outperformed 
PDF and SHARP, with no visible RBFs. MEDI and Iterative Tikhonov both showed minimal SAs for the 
type II and IV datasets, but Iterative Tikhonov was more stable with the higher-noise (type VI) dataset. 
 

 
Fig. 1. Overview of methods and results: (a) TPM QSM pipeline overview. Conventional [10] vs TPM pipeline. 

Central axial slice of a plaque is shown for each step. TPM reduces SAs and RBFs; (b) Overview of 
optimisation steps summarising algorithms and parameters explored as well as final pipeline [10-14]. 

Discussion: The TPM QSM pipeline used provided noticeable SA reduction and was computationally 
efficient, specifically for an advanced type VI plaque [9]. Increasing the noise mask threshold level 
reduced the level of SA caused by low-signal regions; however, if the threshold was set too high the χ 
map presented large discontinuities as the mask was not solely localised to the regions of high-noise. 
As previously reported in the literature, Laplacian provided more stable and computationally efficient 
unwrapping compared to PRELUDE, most notably for the advanced plaque [15]. Using the presented 
pipeline, optimised for ex vivo plaques at various stages of disease, the χ values within fibrous tissue, 
calcification and intra-plaque haemorrhage are comparable to available data in the literature [16]. 
Conclusions: A robust QSM pipeline was developed for the analysis of ex vivo human carotid 
atherosclerotic plaque. The pipeline and optimisation process developed in this study are 
transferrable for other ex vivo QSM studies involving heterogeneous tissues. Current work is focusing 
on investigating the χ maps in the context of mechanically relevant microstructural components which 
could be improved biomarkers for ‘vulnerable’ plaques.  
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Background:  
Over the last few years, gastrointestinal (GI) magnetic resonance imaging (MRI) has provided 
unprecedented insights into functional gastrointestinal diseases (FGIDs), with much more still to be 
discovered. Despite this organ's relatively large size and pathophysiological significance, MRI of 
colonic function remains a largely unexplored area. Recent work from our group has investigated 
colon volumes and motility in adult functional constipation (FC) but very little is known about colon 
length in health and FC. We aimed to develop colon length measurements and hypothesised that 
there would be differences in total and regional colonic length between adults with functional 
constipation and healthy controls. 
 
Methods:  
The colon length measurement methods were developed on the commercial platform Enterolytics 
provided by UK specialist company Motilent, with whom we collaborate. Briefly, the colon was 
visualised in a three-dimensional space, and the operator manually defined the centre line of each 
segment (ascending, transverse, descending and sigmoid) (Fig1), which was then quantified. A 
retrospective series of MRI images were then retrieved [1, 2]. The MRI scans were taken at the 
morning baseline after an overnight fast. Images were acquired using a whole-body 1.5T scanner 
(Achieva, Philips Medical System, Best, The Netherlands) in the supine position, using a 16-element 
abdominal coil. A coronal dual-echo gradient echo sequence was used. It acquired 24 contiguous slices 
with one expiration breath hold of 15 s (TR / TE1 / TE2 = 157 / 2.30 / 4.60 ms, 256 × 256 reconstructed 
matrix, voxel size 1.76 × 1.76 × 7 mm 3). The set was acquired with an expiration breath-hold of 
approximately 13 seconds. The participants from those studies attended repeated visits, thus also 
allowing assessment of individual colon length variability between visits. The MRI scans covered the 
entire undisturbed, unprepared colon. Preliminary results presented here are from n=20 adult 
participants, of whom n=15 were patients with FC and n=5 were healthy controls. Intra-operator 
variability was first assessed by measuring colon segments on the same datasets six times on different 
occasions. Intra-operator and intrasubject variability were appraised by using the coefficient of 
variation (CoV). The CoV is commonly used, and low values (e.g. less than 10%) are generally accepted 
as reflecting a dependable and sufficiently consistent measurement. Secondly, all colon segments 
were measured in both groups and compared. 
 
Results:  
The intra-operator CoV for total colon length was 2% and ranged between 2% and 6% for individual 
colon segments. The CoV for intraindividual variability between repeated visits was higher, with an 
average of 4% for total colon length and between 5% and 19% for individual colon segments. Total 



 

 

colon length in patients with FC was significantly longer, 114±23cm (mean±SD), than in healthy 
controls, 88±9 cm, p<0.05. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Measurements of separate colon anatomical segments (A, is ascending colon (AC); B, transverse 
colon (TC); C, descending colon (DC) and D, sigmoid colon (SC)). The figure displays one image plane of 

the multislice stack with the three-dimensional measuring line overlayed. 
 
 
Discussion: 
This initial work was successful and showed that the new colon length measure was accurate and that 
participants' physiological variability between different days was higher than the intra-operator 
variability, most likely reflecting a natural variation of colon lengths across different days. All colon 
segments were longer in constipated patients. The rectal region proved to be more difficult to assess 
and optimised imaging could mitigate this difficulty. Future work will add further data to this initial 
series and will also develop better MRI scanning protocols to help three-dimensional visualisation of 
the more distal colon, which could allow for more accurate measurements. 
 
 
Conclusion:  
New colon length information together with other measurable endpoints such as colon volumes and 
transit in FC may help improve our understanding of functional gut diseases and the mode of action 
of drugs.  
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Introduction: Central nervous system (CNS) tumours account for 25% of all paediatric cancer cases in 
England [1] and  have the highest mortality rate of any group of childhood tumours with a 5-year 
survival rate of 74% in England [1]. Predicting prognosis in paediatric brain tumours is a complex 
problem due their high degree of biological variability and heterogeneity, the patient’s overall health 
and stage of development, and a variety of possible treatment paths. Increased data availability and 
the rich nature of MRI have incentivised the combined use of radiomics and machine learning in 
medical image analysis to tackle this problem. Previous studies have shown the power of radiomics 
and machine learning in predicting diagnosis in childhood brain tumour [2, 3, 4], and has seen some 
success in predicting prognosis with multi-modal MRI [5, 6]. This study aims to evaluate the prognostic 
performance of unsupervised learning methods in the context of childhood brain tumours, focusing 
specifically on the combination DWI features with patient demographics. 
Methods: This study utilised retrospective clinical data from 84 paediatric brain tumour patients with 
long term-survival information made available via the Children’s Cancer & Leukaemia Group’s long 
term functional imaging study established in 2004 [7]. A set of 24 first order radiomic features were 
extracted from ADC maps, generated using DWI data acquired at 1.5T across four scanners located at 
Birmingham Children’s Hospital using two b-values of 0 and 1000 s/mm2. Features were generated 
using the whole tumour regions of interest specifically excluding cystic tissue and oedema. 
Additionally, survival status, age at diagnosis and gender were collected from patient records. The 
data is comprised of 41 male and 43 female patients, with an age range at diagnosis of 0.33 to 16.3 
years. 19 patients were deceased as a direct result of tumour progression with all others still alive.  

 
Fig. 1. Data workflow showing the various stages of data processing, clustering and survival analysis 

 
Fig. 1 outlines the workflow for constructing two dimensionality-reduced feature sets, each class-
balanced and fed into clustering models. The resulting cluster predictions were then evaluated to 
determine the prognostic significance of fitted clusters. Dimensionality reduction was performed 
using Principal Component Analysis (PCA) with 6 components explaining 95% of variance.  K-Means 
and Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) clustering models were each 
initialised to find 2 clusters. Models were fitted using the Synthetic Minority Over-sampling Technique 
(SMOTE) balanced feature sets to compensate for class imbalance and evaluated using the unbalanced 
feature sets. Hazard Ratios were calculated using Cox Proportional Hazards Regression.   



 

 

Results: K-Means clustering was unable to identify any significant groups. BIRCH successfully identified 
two clusters with significant prognostic value (p<0.05) for both feature sets. With ADC features alone, 
this method distinguished two clusters of notably different risk, obtaining a hazard ratio of 
4.71(p=0.0383). With the inclusion of patient demographics, the resulting hazard ratio is raised to 9.83 
(p=0.0262). The Kaplan Meier curves in Fig. 2 show the long-term survival for each set of clusters found 
using BIRCH.  

 
Fig. 2. Kaplan Meier curves showing long term survival for each set of groups found through BIRCH clustering 

of a) radiomic feature set, b) radiomic + patient demographic feature set. 
 

Discussion: BIRCH identified two significant prognostically divergent clusters in both feature sets, with 
the inclusion of age at diagnosis noticeably improving risk differentiation. This established existence 
of two divergent patient groups through unsupervised methods alone, implies an unexplored 
underlying relationship between prognosis and the distribution of extracted features warranting 
further investigation. The failure of K-Means clustering may be a result of overdependence on outliers 
and instability near cluster of resulting clusters. This study did not enforce a minimum survival 
threshold or set diagnosis criteria during patient selection, each of which may have increased 
complexity of prognostic trends, yet significant prognostic groups were still identified exhibiting the 
potential of simple first order radiomics in a complex and noisy prediction space in. 
Conclusions: ADC radiomic features have been shown to provide prognostically powerful and 
statistically significant results, identifying low and high-risk patient groups. Further validation with 
larger datasets is required to evaluate the generalisability of these findings. Correlation with 
pathological diagnosis, histopathological characteristics and WHO tumour grade will be important to 
determine underlying physical mechanisms and the potential added value of identification of adverse 
radiomic features in low grade tumours and good prognosis radiomic features in high grade tumours. 
It has also been shown that demographic features such as age at diagnosis can act as powerful aids to 
radiomic features for prognostic prediction, improving the differentiation between low and high-risk 
paediatric patients. 
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Introduction: Unlike in some areas of the body eg. Liver and kidney, cystic lesions in the lateral neck 
are rarely simple and not infrequently malignant. Ultrasound is often the first modality used to 
investigate lumps in the head and neck at which unilocular lipoma and simple cysts can look similar  
[1] In such cases, characterisation of such lesions would typically defer to MRI with which 
discrimination of fat and water is typically trivial and unequivocal [3]. This poster presents an 
incidental lesion in the lateral neck first and mistakenly described as fat which several years later led 
to medicolegal proceedings. A brief review of contrast mechanisms in complex cystic lesions of the 
lateral neck is made along with a summary of different fat suppression techniques available to clinical 
radiologists and their relative strengths and weaknesses. 
Methods: Anonymised case presentation of a focal lesion in the lateral neck with imaging from index 
MRI at which it was presumed to be fat-containing. Subsequent clinical evolution and imaging with 
repeated ultrasound, CT then repeat MRI with review of the original MRI sequences illustrating a 
clinical pitfall when using inversion recovery to supress fat in complex cystic lesions. 

Results: An incidental left lateral neck mass was seen at MRI of the brain for unrelated clinical 
indication. This lesion was located at level 2 in the left lateral neck and hyperintense at T1 with 
complete suppression at STIR and described unequivocally as a lipoma (Fig 1). Over the next 3 years, 
the patient received 3 ultrasound scans. The first two were for reasons unrelated to the left level 2 
lipoma whose earlier MRI diagnosis was not challenged. Despite identical appearances on a third 
ultrasound scan, an alternative differential of Branchial cleft cyst was suggested and ultimately 
confirmed following excision. The patient subsequently made a claim for medicolegal negligence for 
failing to make the correct diagnosis on the earlier 2 ultrasound scans. 
 

 
Fig. 1.  

 
Discussion: Cystic lesions in the head and neck are common but are not so often simple and benign 
that they should be readily dismissed. Pure fat containing lesions are rare in the head and neck but 
are typically trivial to differentiate with standard clinical MRI sequences such as T1 TSE, STIR and 



 

 

Chemical Shift Suppression (CHESS). Under certain conditions, fluid containing cysts in the lateral neck 
can mimic fat on STIR sequences and errors can be made in clinical interpretation can be made if fat 
specific suppression sequences using chemical shift are not also acquired. Or, if they are acquired but 
not reviewed when reporting as in the current case. Reporting errors on subsequent ultrasound and 
CT are reviewed, categorised and discussed along with how these can lead to medico-legal action and 
how breach of duty is considered and determined when writing expert medical opinion. The additional 
fact of homogenous hypo intensity on TSE T2 is presented along with suggestions (and invitations) to 
explain the underlying contrast mechanism accounting for this in vivo [2]. 

Conclusions: Cystic lesions in the head and neck are common and not infrequently malignant. Some 
cysts can be complex and lead to mischaracterisation as fat if the incorrect fat suppression technique 
is used. Often, histological diagnosis requires sampling with fine needle aspiration or excision biopsy 
[4]. Poor patient outcomes and ensuing medicolegal action is a risk of inaccurate imaging diagnosis 
which can occur years down the line. We discuss the relative advantages of clinically available fat 
suppression techniques with MRI, consider and invite hypotheses to explain co-incidental 
homogenous t2 signal void and review how breach of duty is determined when writing expert witness 
reports in clinical radiology. 
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Introduction: Global paediatric obesity rates have tripled in the last 50 years and are closely linked 
with increasing incidence of non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis 
(NASH) and metabolic syndrome (MetS). Not only is early NAFLD asymptomatic and liver function tests 
insensitive to mild disease, but assessment by liver biopsy has increased risk of complication in 
children. Multiparametric MRI (mpMRI) metrics of liver fat (proton density fat fraction [PDFF]) and 
disease activity (fibro-inflammation, iron-corrected T1 [cT1]) can characterise and monitor chronic 
liver disease, but hitherto, have not been used to investigate BMI, NAFLD and MetS relationships in 
young pre-pubertal children with potentially asymptomatic disease. Male Hispanic populations tend 
to have both a higher prevalence of NAFLD/NASH and a greater likelihood of developing cirrhosis. Our 
aim was to determine the clinical usefulness of mpMRI for assessing NAFLD in asymptomatic male 
Hispanic children who are at risk of having or developing advanced liver disease. 
 
Methods: Pre-pubertal boys (n=81) aged 7 to 9 years of varying Body-Mass Index (BMI) (: 17.4 ± 3.5 
kg/m2) were recruited in Mexico City. Anthropometric, plasma metabolic and liver health data were 
collected prior to non-contrast mpMRI at 3T Shortened modified look-locker inversion (shMOLLI) and 
multi-echo spoiled gradient-echo sequences were used to measure liver T1 and iron/PDFF, 
respectively [1]. PDFF was calculated using IDEAL, and cT1 following correction for iron using T2*. Non-
parenchyma structures such as bile ducts, large blood vessels and image artifacts were excluded from 
image analysis. MetS risk was assessed using the Identification and prevention of Dietary- and lifestyle-
induced health EFfects In Children and infantS’ (IDEFICS) criteria. Participants were trichotomised into 
three groups: NAFLD, PDFF ≥5%; NASH, PDFF ≥5% and cT1 ≥800ms; and high-risk NASH (NASH score 
of ≥4 and fibrosis stage (F) ≥2), PDFF ≥5% and cT1 ≥875ms [2]. 
 



 

 

Results: At recruitment, and prior to the non-contrast mpMRI scan (Fig 1), all participants were 
asymptomatic and did not have any reported/existing liver disease. Most children (81%) had liver 
transaminases within the normal upper limit, 38% had high BMI and 14% had ≥3 MetS risk factors.  
 

 
Fig. 1. Typical transverse corrected T1 (cT1) maps for underweight, healthy, overweight and obese participants 

calculated from multiparametric magnetic resonance imaging (mpMRI) data collected using LiverMultiScan 
(Perspectum Ltd, Oxford, UK) image acquisition protocol and MRI scanning sequences.  

 
Applying mpMRI thresholds, 12%, 7% and 4% had NAFLD, NASH and high-risk NASH respectively. 
Participants with ≥3 MetS risk factors had higher cT1 (834ms vs. 737ms, p=0.004) and PDFF (8.7% vs. 
2.2%, p<0.001) compared to those without risk factors (Fig 2). Those with elevated cT1 tended to have 
both high BMI and abnormal metabolic measurements including insulin (p=0.005) and leptin 
(p<0.001).  

 
Fig. 2. The relationship between corrected T1 (cT1) and increasing metabolic syndrome (MetS) risk groups. 

 
Discussion: The increasing prevalence of paediatric obesity has been strongly linked with rising global 
rates of NAFLD. This prospective study has demonstrated that elevated cT1 and PDFF, indicating liver 
dysfunction, are correlated with higher BMI and a greater risk of MetS. The significant association 
between increased risk of MetS and abnormal mpMRI, particularly cT1, highlights that cT1 has similar 
utility as reported in adult management. 
 
Conclusions: Liver cT1 measurement has clinical utility in routine paediatric NAFLD screening 
programs, especially of high risk (high BMI and high MetS risk score) children, to assess NAFLD and its 
severity, alongside fibrosis markers for those with advanced liver disease. This would support early 
disease detection and stratification of young asymptomatic children at increased risk of developing 
NAFLD for therapeutic intervention. 
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Introduction - With Magnetic Resonance Imaging (MRI) being the gold standard for diagnosis, 
treatment planning and follow-up for many conditions, the number of MRI requests is only ever 
increasing. This is especially true for paediatrics who can be a challenging patient group, frequently 
with additional needs [1, 2]. Often the answer has been to scan younger children under general 
anaesthetic (GA), however this comes with associated risks and additional costs [1, 2]. Attending for a 
GA scan can be traumatic for not only the patient, but also for the parents/carers [3]. Hospitals can be 
frightening places with lots of new people and scary equipment and seeing your child go undergo an 
unfamiliar procedure, often when poorly can be very difficult for some [3]. We have tried a new 
method to reduce the need for a GA, and in turn, save money and improve the patient experience.  
Play therapy had been used in our trust to help prepare children for their GA-MRI scan. It was 
suggested that with enough time, the correct preparation and support from the play specialists, it 
would be possible for children to have MRI scans awake. After reviewing the Paediatric MRI pathway 
and liaising with the children’s hospital, a successful bid was made to the hospital charities to fund a 
full-time play specialist for 12 months, which has then continued due to initial success. 
Methods - We began with a small but successful trial of 8 children, with 7 children completing their 
scans with diagnostic images. Only 1 had to return for a scan under GA due to noise sensitivity. After 
this positive outcome we began booking one Play Therapy List (6-8 patients) per week.  
Initially we started with children aged between 3-12years for non-contrast scans, but have expanded 
this slightly for older children with additional needs and for some well-behaved younger children. We 
now also scan those who require contrast, including a much larger proportion of those on the waiting 
list. When a potentially suitable patient is identified, the parents/carers are called to explain this new 
service and to discuss whether their child may be able to have an awake scan.  
We currently run one list a week due to scanner capacity, each appointment slot has additional time 
for preparation with the play specialists and bookings are also overlapped so one can be scanned 
whilst the next is being prepped.  
Each session with a play specialist is tailored to the patient so is different every time. Everyone is 
individual so may need more or less support and reassurance. After building a rapport with the child 
and their parents/carers, a simple explanation is given - They need to lie down and stay very still, it 
will be very noisy and will take about 30 minutes, but they can watch a film through a mirror above 
their head and wear headphones. Whilst you have to provide reassurance, support and make it fun; 
most importantly you need to be honest. “It doesn’t hurt, but it will be noisy”.  
From a Radiographers point of view, we use slightly adapted protocols with as few sequences as 
possible, scanning the most important first, and noisiest last. Motion controlled sequences are also 
used where possible. We do work closely with the Play Specialists so it’s important to be patient, but 
also have a sense of humour.  



 

 

In addition, we were lucky enough to have a new section of the department built with children in 
mind; a colourful and fun waiting room with toys, books and films, an animation comparing the MRI 
process to a space journey, a kitten scanner for younger children to play with and a screen with a DVD 
player in the scan room. All which have greatly helped the Play Specialists to work their magic. 
Results - The first 14 months of Play Therapy lists have been analysed for success. Out of those who 
were given a play therapy appointment, 95% of patients managed to have their scan awake. The main 
reasons for children not being able to go through with their scan is being too scared, or anxious, having 
had a traumatic experience with the cannulation beforehand or being noise sensitive. The majority of 
children were between 4-13yrs old, some older children with additional needs and a few very well 
behaved 3yr olds.  
Diagnostic images are the main aim of any scan. When all awake scan reports were reviewed for 
comments on motion artefact, 1% were undiagnostic, 4% were heavily degraded-but still diagnostic, 
7% moderate and 12%. 76% had no noteworthy motion artefact showing the success of this new 
pathway. 
Going forward we will continue to analyse the data in more depth to include more detailed feedback 
from children/parents/carers, reduction levels of waiting lists and any difficulties the play specialists 
have. Difficulties included limited scanner capacity and a lack of both Play Specialists and 
Radiographers leading to only one list per week. Children picking up on parents’ anxieties leading to 
additional preparation and time being needed for some parents too. Delays due to difficult 
cannulations and waiting for Drs to attend to give contrast.  
Discussion - Play Therapy is not a new concept within healthcare, but with funding from charities and 
support through the play specialist team, setting up this new service within MRI has been extremely 
beneficial. Focussing on not only the patient experience, but also the experience of the parent/carer 
has led to increased attendance rates and a more positive overall outcome for all involved.  
With no relative risk when compared to a scan under GA, less traumatising for the children, and 95% 
of successful scans having diagnostic images, this new service is certainly advantageous. Not only for 
the patient/parent, but also for the trust as money is saved due to expensive equipment and specialist 
staff not being needed, and waiting lists being reduced faster. 
Whilst the role of the Radiographer has not changed a great deal, being involved with these Play 
Therapy Lists has helped to develop our own practice through improved communication and 
interpersonal skills. Observing and assisting the Play Specialists has highlighted alternative techniques 
which we can adopt when scanning paediatrics at other times, not only during these specialist lists. 
The ability to adapt our approach to each individual patient is essential for providing the best care 
possible.  
Conclusion - Play Therapy has been an excellent addition to the options available for paediatric 
patients needing an MRI scan. Not only is it safer for the child, less traumatic and occasionally 
enjoyable, but it is a more pleasant and less stressful time for the parents. A relatively simple service 
to implement, it is cheaper for the trust and has helped to reduce the paediatric waiting list 
considerably; allowing those who do need a scan under GA to have this sooner. 
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Introduction: Natural environmental sound such as the sound of flowing water offers a therapeutic 
element for balancing emotional and mental states.  This is because the sound of flowing water 
possesses comforting and relaxing qualities to human listeners [1][2]. However, evidence reporting 
hemispheric dominance in the presence of comforting sound, particularly in auditory working memory 
(AWM) area, remains limited. A recent study utilising a  noisy background confirmed changes in the 
lateralization of AWM during stochastic resonance (SR) mechanism leading to enhanced cognitive 
performance [3].   
Methods: In this study, functional magnetic resonance imaging (fMRI) was used to examine the effects 
of comforting sound on working memory (WM) through a word reversal task. Thirty-three healthy 
male non-musicians (Mean age = 21 years) participated in the study. Participants were required to 
listen to a series of words presented auditorily and repeat them in reverse order. The auditory stimuli 
were presented at an intensity level of 60 dB with comforting sound embedded at 45, 50, 55 and 60dB 
as background noise. Six regions of interest (ROIs) related to AWM were investigated, namely the 
bilateral superior temporal gyrus (STG), medial frontal gyrus (MFG) and superior frontal gyrus (SFG). 
Data were analysed using Statistical Parametric Mapping (SPM) version 12.0 and MATLAB R2021b. 
Individual participant’s activation was obtained via a fixed-effects analysis (FFX) at a corrected 
threshold at pFWE < 0.05. The number of activated volume (NAV) was extracted from the designated 
ROIs for each participant using the WFU-Pickatlas [4] and plotted using MS Excel to obtain the inverted 
“U” curve. 
Results: Mean WRT score plotted across all intensity levels revealed an inverted “U” shape curve, 
indicating the presence of SR phenomenon as shown in Figure 1. The mean NAV for right hemisphere 
of STG, MFG, SFG are higher compared to left hemisphere within the same ROI. Brain activity exhibited 
a sinusoidal pattern, which peaks at 45dB and 55dB and trough at 50dB and 60dB depicted in Figure 
2 which describes the mean NAV plotted against 45, 50, 55 and 60dB for right and left hemispheres in 
each ROI.  

 
Fig. 1. WRT score during comforting sound at four intensity levels.  



 

 

 
Fig. 2. Scatterplot depicting the mean NAV of bilateral ROIs in AWM area. 

 
Discussion: In the presence of comforting sound at 55dB, AWM performance was improved in all 
participants indicated by the mean across all ROIs (MeanROIs= 1190.5) and mean WRT score (Mscore= 
26.88). Brain activation during comforting sound reached its peak at 55dB for all ROIs in both 
hemispheres, with higher activation observed in STG, MFG and SFG respectively. The finding also 
demonstrated dominance in the right hemisphere. Comforting sound was found to have the potential 
to enrich neural processing of STG, MFG and SFG during task execution. However, the study did not 
observe the SR phenomenon to the same extent as with white noise through the brain activation 
especially for SFG area[3]. Nonetheless, listening to comforting sounds not only exudes relaxed state 
but also has the capacity to improve cognitive performance.  
Conclusions: Hemispheric asymmetry was observed with dominance in the right hemisphere under 
the presence of comforting sound during processing of series of words in reverse order resulting in a 
sinusoidal pattern of brain activity in non-musician young adults.  
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Introduction: Metabolic-associated fatty liver disease (MAFLD) occurs in 25% of the population and 
is comprised of a spectrum of increasingly pathological states: steatosis (lipid accumulation) to 
steatohepatitis (inflammation and fibrosis) and finally cirrhosis (parenchymal replacement) [1]. 
Proton density fat fraction (PDFF) imaging provides quantitative information about liver fat and 
permits in-vivo longitudinal assessment of disease progression [2]. We have developed a novel 
murine model of LIver Disease Progression Aggravation Diet (LIDPAD), which matches all 
physiological alterations present in human MAFLD. The current study was performed to characterise 
this MAFLD model using Dixon imaging and MR spectroscopy. 
Methods: 8-week-old, C57BL/6 mice were fed the high-fat LIDPAD or control diet for up to 48 weeks. 
Using a 9.4 T MR system and a multi-gradient eight-point Dixon imaging sequence, hepatic and 
abdominal fat was quantified from 4-, 8- and 16-week diet fed mice. Sequence parameters; TEs 1.85, 
2.08, 2.32, 2.56, 2.80, 3.04, 3.27, 3.51ms; TR 12ms, flip angle 5°, 30 slices, 1mm thickness; 256x256 
image size with 40x40mm FOV. PDFF maps calculated using Fat-Water Toolbox [3]. 3350mm3 ROIs 

were placed in each liver. Water 
unsuppressed single voxel PRESS 
sequence was used to measure the 
lipid/water ratio in a 3mm3 voxel 
using 128 averages, TE 17.8ms and 
TR 4500ms. In vivo MRS results 
were confirmed with high-
resolution magic angle spinning 
nuclear magnetic resonance 
(HRMAS-NMR) with 10uL TMS 
reference using 30mg of the liver 
tissue. Samples were spun at 5KHz 
in a 4mm ZrO2 rotor at 277K using 
16 scans, receiver gain of 16, a 
recycle delay of ten seconds and a 
spectral width of 14.027ppm. 
Spectral peaks were assigned 
according to published literature 
and integrated for comparison 
against the TMS peak. Fat fraction 
was calculated using the total lipid 
and water integral values. 
Results: LIDPAD-fed liver PDFF 
ranged from 12.6% to 28.3% and 
was significantly increased over 
control PDFFs (6.6-12.3%) at all 
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Figure 1. 1A and 1B show in-vivo quantification of hepatic fat 
through Dixon imaging. Spectroscopic techniques, in-vivo PRESS 
(1C) and ex-vivo HRMAS-NMR (1D) were also used for 
confirmation and timepoint extension. 
 



 

 

timepoints (p=<0.01 for all) (figure 
1A, 1B). A near-10-fold increase in 
lipids between 4 and 8 weeks 
occurred (2.9% to 28.9%, p=0.02), but 
fat aggregation slowed at the last 
timepoints. HRMAS-NMR confirmed a 
swift hepatic lipid accumulation at 
early time points of the LIPAD diet, 
followed by a plateau; 12- and 40-
week livers had similar lipid content 
(p=0.9) (Figure 1D). A reduction in the 
median LIDPAD lipid concentration 
(34.2% to 27.5%) was detected 
between the 40th- and 48th-week. 
After four weeks of LIDPAD feeding, 
histological alterations in the liver 
were consistent with steatosis and 
heavy fibrotic deposition by 16 weeks 
(figure 2A). Outside of the liver, lipid 
accumulation was also detected in 
the abdominal area, both viscerally 

and subcutaneously. Although not significant, the mean visceral fat volume increased 2.3-fold at 16-
weeks post-diet initiation between control and LIDPAD mice. Similarly, mean subcutaneous fat 
volume was nearly double at 16 weeks in LIDPAD mice (figures 2B and 2C).  
Discussion: Dixon imaging provides an assessment of global fat accumulation, allowing for visual 
representation of fat deposits throughout the liver. Imaging permits the diagnosis of steatosis in 
humans when the average fat percentage is above 5% [4]. LIDPAD-fed mice demonstrated steatosis, 
with an early and significant rise in hepatic lipids within the first four weeks, which continued to rise 
until the sixteenth week. LIDPAD-fed mice displayed increased abdominal fat volumes in both the 
visceral and subcutaneous compartments. Human MAFLD patients often present with obesity and 
adiposity, which is reflected in this model. Mice fed the LIDPAD diet displayed shifts in genetic 
expression suggestive of lipid dysregulation and demonstrated fibrotic processes, changes presented 
in human MAFLD disease progression, confirmed histologically [4]. In-vivo spectroscopy results 
correlated well with Dixon fat measurements, albeit from a single voxel. While Dixon imaging allows 
for fat fraction assessment, it is unable to distinguish between lipid types. HRMAS-NMR analysis 
from samples both early and late time points of the LIDPAD diet confirmed the in vivo findings and 
the changes in lipid metabolism. 
Conclusions: The LIDPAD model accurately mirrors the morphological and metabolic changes seen 
during human MAFLD pathology, with MR techniques being an ideal tool for assessing disease 
progression. 
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Figure 2. Accumulation 
of fat and fibrosis visible 
in histology (2A). 2B 
and 2C show increase in 
fat storage in in 
subcutaneous (2B) and 
visceral (2C) areas. 
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Introduction: An overexpression of choline kinase α (ChoKα) is a hall mark of tumour progression1. 
Total choline (tCho) has been proposed as a pharmaco-dynamic marker for monitoring response to 
ChoKα inhibition in rodent models of glioblastoma (GBM)2. Previous studies from our group have 
reported MRS findings assessing inhibition of ChoKα in a rat model3 and in mouse models of breast 
cancer4. Temozolomide (TMZ) used as a standard of care chemotherapy in the treatment of GBM, 
especially when combined with other therapeutics5. However, its efficacy in combination with ChoKα 
inhibition has not been reported. This study was therefore conducted to explore the synergistic effect 
of Mn58b along with TMZ on GL261 mouse model of GBM and to evaluate whether 1H MRS can detect 
the metabolic changes. 
Methods: C57BL6 mice were injected intracranially with 5x105 GL261 GBM cells in the right cortex. 
Once the tumours were observed on T2 weighted MRI (>3 mm in diameter), animals were divided into 
4 groups and treated for five consecutive days: 1) Sham saline control (n=12, intraperitoneal injection), 
2) i.p injection of 4 mg/kg MN58b (n=12), 3) 50mg/kg TMZ via oral gavage (n=7), and 4) Mn58b+TMZ 
(n=7). Imaging was performed on days 0 (baseline), 3 (during treatment), and 6 (end of treatment). 
Single voxel (2x2x2 mm3) MRS spectra were acquired from the tumour region using a PRESS sequence: 
TR = 2000 ms, TE1 = 9.13 ms and TE2= 7.37 ms, number of averages= 200, complex points = 2048 and 
spectral width =4401 Hz. Metabolite amplitude ratios (tCho/NAA, Glx/Cr and mI/Cr) were calculated 
and using QUEST algorithm2 in jMRUI software. 
Results: Figure 1.A shows a representative T2-weighted image of a mouse bearing the GL261 tumour 
with the MRS voxel placement displayed as an inset. Representative in vivo MR spectra from the 
tumour region of mice treated with saline, Mn58b, TMZ and combination, respectively are shown in 
Fig. 1B. No significant change in tumour volume (Fig. 2A) between any group was observed across all 
time points. On day_6, a significant reduction in the percentage change in tCho/NAA ratio with respect 
to baseline was observed in combination treatment group compared to control tumour-bearing mice 
(p=0.04, Fig. 2B). A significant reduction was also observed in mI/Cr ratio (p=0.02, Fig. 2C) between 
 

 
Fig. 1. A_B. 1H MR spectra (voxel overlaid on T2 weighted image (A) comparing treatment response on day_6 in 4 
different groups with GBM (Saline, Mn58b, TMZ and combination, respectively) showing Lip + Lac, NAA, Glx, tCr, 
tCho and mI peaks from the tumour region (B). 
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combination cohort and saline control group at the end of treatment. Combination and TMZ alone 
groups have also demonstrated a significant decline in GLX/Cr on days 3 and 6 (Fig. 2D). No other 
metabolites such as Cho/Cr or NAA/Cr demonstrated significant changes with treatment. Although 
trends in reduction of Cho/NAA and mI/Cr during treatment (day 3, Fig 2) were also observed, they 
were not significant. While MN58b or TMZ alone also demonstrated a decrease in these metabolite 
ratios, they did not induce significant reduction in comparison to saline controls (except for GLx/Cr in 
TMZ alone group). Although not significant, Fig. 2 shows that TMZ alone induced larger reductions in 
metabolite ratios (Cho/NAA, mI/Cr) than MN58b.  

 
Fig. 2. A-D. Box plots comparing percentage change (with respect to baseline) in tumour volume and 3            
amplitude ratios (tCho/NAA, mI/Cr and Glx/Cr) between 4 groups of mice with GL261 mouse GBM treated    
with different therapeutics. Asterisk indicate that the difference between groups reached a significance level of    
0.05. n denotes the number of samples used for quantification. 
                                           
Discussion: We observed synergistic effects of Mn58b and TMZ in the treatment of GBM in this study. 
tumour progression. tCho/NAA has been used extensively in clinical and preclinical studies for brain 
tumour grading and to assess treatment response. A significant reduction suggests ChoKα inhibition 
leading to an arrest in cellular proliferation3

 by Mn58b as well as the extensive DNA damage induced 
by TMZ triggered programmed cell death (apoptosis) in cancer cells5. A significant reduction in mI/Cr 
is similar to the earlier report in a rat model of GBM2 suggesting a treatment response as high level of 
myo-inositol has been correlated with high-grade gliomas6. Glx/Cr ratio has also significantly declined 
in the combined and TMZ alone treatment groups. Such reduction has been reported in the 
aforementioned rat study, however a study conducted by Subramani et al. using IDH1 mutant glioma 
mouse models reported an increase in Glx7 metabolism post TMZ therapy. This discrepancy in results 
might be due to the different GBM models used in these studies.  
In conclusion, 1H MRS is a powerful tool that can noninvasively monitor metabolic induced changes in 
gliomas in response to multiple therapeutic approaches. Concurrent targeting of ChoKα (by Mn58b) 
and the tumour itself (by TMZ) promise to be an alternative in the treatment of GBM.  
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Introduction: Since the early applications of the nuclear magnetic resonance (NMR) in biomedicine, 
the longitudinal T1 relaxation has been reported to differentiate cancer from healthy tissues, at low 
magnetic fields [1]. However, low NMR sensitivity was a substantial obstacle which was overcome by 
the introduction of Fast-Field-Cycling NMR (FFC-NMR) technology, commercially available for 
physics/chemistry research around the 2000s by Stelar company. The main objectives of our recent 
studies were to explore the potential of FFC-NMR relaxometry at very low-field (< 2 mT) to 
characterize tumour heterogeneities, their phenotype and microenvironment. Our investigations 
were focused on glioma invasion/migration mechanisms, which are poorly diagnosed and considered 
a significant cause of treatment failure. New biomarkers of water molecular dynamics that connect 
brain tumour features to relaxation changes have been identified, in particular, T1 relaxation at low 
and very low field was demonstrated sensitive to the transmembrane water exchange [2-4]. On the 
basis of this valuable relationship, one of our objective now, is to decipher and understand the 
pathophysiological processes that lead to T1 changes and to connect them to the transmembrane 
water exchange in order to evaluate new theranostic strategies. In case of glioma, three main 
processes of invasion/migration: hypoxia, H2O2 redox function and water-channel aquaporins (AQP1 
and AQP4) have been shown to modulate T1 at low field as well as transmembrane water exchanges 
[2]. Here, our goal is focused to assess T1 sensitivity under the effects of pharmaceutical drugs that 
could inhibit the pathophysiological functions of the AQP4. We focused on the bumetanide drug, a 
NKCC1 inhibitor [5] of sodium, potassium and chloride cellular influx. Interestingly, the bumetanide 
was already approved for patients and was shown to inhibit the excess expression of AQP4, that 
slowdowns the invasion/migration process [6]. Knowing that AQP4 interacts with several other 
proteins and channels, we hypothesize that treatments with bumetanide should be more beneficial 
than those that target water channels specifically such as AQP4 SiRNA and/or ShRNA. 
Methods: FFC-NMR was used to measure T1 at very low field and to acquire R1-NMRD profiles (R1 = 
1/T1 versus magnetic field). This technology was developed to solve the crucial problem of NMR 
sensitivity at low-fields. It is the only NMR technique that permits T1 measurements at low (< 0.2 T) 
and very low-fields (< 20 mT), covering several decades of the frequency [10 KHz- 40 MHz], with the 
same relaxometer. The mathematical Power-Law model was applied to NMRD profiles by exploiting 
two parameters: the power-weight AP and the power-component β, both probing tissue water 
dynamics. The intracellular water lifetime (τIN) that characterizes the kinetic of the transmembrane 
water exchange, was measured in vitro on glioma cells and in vivo on glioma models, according to 
methods described in references [2-4]. Two experimental glioma mouse models of 
invasion/migration, Glio6 and Glio96 and their corresponding cells were used. Their phenotypes were 
characterized by MRI (T2w and DTI), HE histology, Ki-67 immunohistochemistry (IHC) and CXCR4 RT-
qPCR and compared to U87, a standard glioma mouse model of high proliferation [3-4]. The effects of 
the bumetanide drug on NMRD profiles, on R1 relaxation rate at very low field and on transmembrane 
water exchange, was evaluated on U87 glioma cells under stimuli of 5 µM H2O2. The bumetanide was 
added into the cells at a concentration of 1µM, and then the cells were put in incubation at 37 °C for 
approximately 18H. In preliminary experiments, a dose study has been performed using the Boyden 
chamber assay approach, selecting the doses that significantly slowdowns cell migration.  



 

 

Results: Herein, we show that R1 at very low fields and τin both measured in vitro on U87 glioma 
cells are sensitive to hypoxia and to H2O2 redox signalling. Indeed, we observed a significant 
decrease of R1 and τin. Also we show that these two parameters are sensitive to 
invasion/migration in vitro and in vivo by comparing Glio6 and Glio96 to U87. Using IHC, we 
showed that AQP1 and AQP4 are up-regulated in invasion/migration, highlighting the role of 
these aquaporins to modulate transmembrane water-exchange that in turn modulates T1 
relaxations. All these outcomes will be clearly presented and have been already published [3-4]. 
The proof of the concept of the bumetanide effect was evaluated on U87 stressed with H2O2. R1 
relaxation rates at very low field were found higher, attempting to reach control values of U87 
cells without H2O2 stimuli (Fig. 1), a result that suggests the slowdown of the transmembrane 
water exchange under the effect of the bumetanide drug that is in line with our hypothesis. 

Fig. 1. Comparison of the mean R1-dispersion between Control, H2O2, and H2O2 treated with Bumetanide (n = 6) 
 
Discussion: The effect of the bumetanide was evaluated on U87 cells, stressed with H2O2 in order 
to mimic the characteristics of invasion/migration process and were used because they have a 
rapid growth than Glio6 and Glio96 (3 weeks versus 3 months). Transmembrane water exchange 
measurements on U87 cells and on Glio6 and Glio96 under bumetanide are works in progress and 
should confirm our findings. Our results stipulate the major role of FFC-imaging (FCI) and MRI at very 
low field to visualize the entire invasion/migration volume noninvasively and to evaluate the efficiency 
of innovative therapies that target transmembrane water exchange. This may impact the medical 
community since delineation and efficient therapies of cancer invasion/migration remain both 
challenging by any medical imaging modality. Our results suggest that FCI, in combination with 
bumetanide, may be a promising strategy in the treatment of human glioma. 
Conclusions: NMR at low field appears appropriate to evaluate the effect of drugs that can target 
transmembrane water exchange which is connected in case of glioma to the pathophysiology of 
invasion/migration, namely, hypoxia, H2O2 signaling redox and AQP1 and AQP4 functions, opening 
thereby a relevant invasion/migration theranostic method, that can be extended to different cancers. 
Here we show the potential of the bumetanide as an anti-invasive drug and we underline the 
determinant role of FCI technology to evaluate its efficiency, in patients noninvasively.  
Acknowledgements: We thank Y Ben-Ari for useful discussion, P.H. Fries and A. El-Gady for helping in 
FFC acquisitions and M. El-Atifi in cell culture. 
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Introduction: Glioblastoma (GBM) is an aggressive brain tumour characterized by aberrant 
vasculogenesis and hypoxia, promoting tumour growth and treatment resistance [1].The chick 
chorioallantoic membrane (CAM) is a time- and cost-effective alternative to rodent models of cancer. 
The CAM has a well-developed vascular network, enabling tumour cells to readily engraft, and is 
amenable to in vivo imaging, making it ideal for studying vascularization (Ribatti et al., 2022). This 
study was performed to evaluate the effects of hypoxia on tumour/ host vasculature in the GBM-CAM 
model using MRI. 
Methods: Tumour xenografts were generated by implanting 2x106 U251 cells onto the CAM on 
embryonic day 7 (E7). For hypoxic tumours, cells were conditioned in a hypoxia chamber at 1%O2 for 
72 hours prior to implantation according to methods previously described (Al-Mutawa et al., 2018). 
On E13, non-tumour bearing control and xenografted CAMs were imaged in ovo using brightfield (BF) 
microscopy and MRI. For MRI, eggs were placed in a custom-built cradle with an actively decoupled 
20 mm diameter surface coil placed above the site of the tumour, while an 86 mm volume coil was 
used as a transmitter.  3D T2-weighted (TurboRARE) images were acquired to assess the tumour 
volume as well as the vascular volume feeding the tumour.   
Results & discussion: All tumours formed vascularized nodules with a high engraftment rate (90%). 
BF microscopy revealed distinct differences in CAM vasculature between GBM- and control CAMs. In 
GBM-CAMs, blood vessel morphology appeared to change from linear branching to a radial "spoke-
like" pattern around the tumour (Fig 1A).   Control CAM vessels appeared thicker, while GBM-CAMs 
had a greater number of small diameter vessels, suggesting angiogenesis to supply the tumour. 
Hypoxic GBM-CAMs demonstrated more abundant vasculature, with more blood escaping into the 
CAM, suggesting leaky blood vessels.  These findings suggest significant vascular remodelling in the 
presence of GBM xenografts. MRI revealed vessels penetrating the nodules, not visible by BF 
microscopy. Quantification of MR images revealed a trend towards increased blood vessel volume in 
tumour-bearing CAMs compared to control CAMs (P= 0.1506). While tumour volume remained similar 
between the two groups (P= 0.7519), a trend towards greater blood vessel volume was observed in 
hypoxic compared with normoxic tumour-bearing CAMs (P= 0.3138). 
 
 
 
 
 
 
 



 

 

 

 
Fig. 1. GBM tumour nodules remodel CAM vasculature and hypoxic preconditioning increases vascular 
volume.  A, Brightfield microscopy images of control non-tumour bearing CAM, GBM-CAM in ovo and 
dissected GBM-CAM tumour ex ovo. B, MR images of GBM-CAM. C, 3D-rendered reconstruction of tumour 
and its feeding and surrounding vasculature in representative Normoxic and hypoxic GBM-CAM. D, Box plots 
of tumour volume in normoxic (n=8) vs hypoxic (n=7) conditions; and blood vessel volume in control (n=7) vs 
normoxic (n8) =and hypoxic (n=8) GBM-CAMs.  

 
Conclusions: Hypoxic preconditioning enables better recapitulation of GBM tumours in the CAM 
model with a trend towards increased blood vessel volume. MRI and BF microscopy enable 
visualization of intra- and extra-tumoural blood vessels on the CAM surface, while MRI provides 
additional 3D information through the layers of the CAM. In combination these provide 
comprehensive assessment of tumour/ host vasculature and demonstrate the potential of GBM-CAM 
to study anti-vascular therapies. 
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Introduction: 19F-MRI of inhaled thermally polarized perfluoropropane (PFP) is an accessible and 
scalable imaging technique that can quantify lung ventilation properties[1]. A challenge of inhaled PFP 
is its short in vivo 19F T2

* (approx. 1.8 ms). Our current 19F studies[2] have used a spoiled gradient echo 
sequence (SPGR) with a TE of 1.7 ms, where approximately 60% of the 19F signal has decayed at 
acquisition. The FLORET sequence is an efficient 3D trajectory based on a Fermat’s spiral[3]  (Figure 
1). We have tested the ability of the FLORET ultrashort echo time (UTE) sequence[4] to minimize T2

* 
decay, raising the SNR of lung images and 
thus improve scan spatial and/or 
temporal resolution compared to the 
established SPGR sequence. 
Methods: Scans were performed on a 
healthy male volunteer, during breath 
holds after deep inhalation of 79% PFP/ 
21% oxygen gas mixture. 19F-MRI scans 
comprised a 14 s coronal 3D 19F spoiled 
gradient echo sequence (field of view 
(FOV)=400x330x250 mm3, TR= 7.5 ms, TE= 1.7 ms, flip angle= 50°, resolution= 10x10x10 mm3, NSA= 3 
and bandwidth= 500 Hz/pixel) and 19F FLORET UTE sequences (FOV= 400 mm isotropic; TR= 7.5 ms, 
TE= 0.07 ms, flip angle= 45o). All scans were performed on a Philips Achieva 3T scanner. Table 1 shows 
FLORET scan parameters. 

FLORET 
params 

Isotropic 
resolution/ 
mm  

NSA Scan time/ s FLORET hubs FLORET alpha FLORET 
interleaves 

Scan 1 10 5 14 3 45o 8 
Scan 2 7.5 3 16 3 45o 21 

Table 1. Varied parameters of the two chosen 19F-MRI FLORET UTE sequences. 
Results: Figure 2 shows a single coronal 
slice from 3D lung scans: A. SPGR, B. 
FLORET UTE 10 mm isotropic, C. FLORET 
UTE 7.5 mm isotropic. Calculated SNR of 
each is 7.8, 14.2 and 7.2 respectively. 
Discussion: Our data show that the 
FLORET UTE sequence provides a 2-fold 
increase in SNR compared to current 
SPGR scans, due to reduction of T2

* 
relaxation effects on signal loss. FLORET UTE at 7.5 mm isotropic resolution has comparable SNR to 
the 10 mm isotropic resolution SPGR sequence. The FLORET sequence allows for improved assessment 
of lung ventilation properties via higher spatial resolution and/or shorter duration scans. 

FIG.2.a. Central slice of SPGR sequence, resolution:10 mm 
isotropic. b/c. Central slice of a FLORET UTE sequence, 
resolution: b. 10 mm isotropic c. 7.5 mm isotropic. 
 

FIG.1.a. A base 2D Fermat spiral trajectory with variable 
radial sampling. b. The trajectory is shaped in 3D to follow 
a 3D cone. c. Multiple trajectories. [3] 



 

 

Conclusions: This study demonstrates the reduction of T2
* signal loss afforded by FLORET UTE 

sequences compared to conventional gradient echo scans, allowing for improvement of scan SNR and 
spatial resolution. We plan comparison of FLORET with other UTE methods such as radial, and 
application of 19F-MRI UTE scans to measurement of lung functional and structural properties in 
studies of respiratory diseases. 
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Introduction: Mitochondrial function plays a vital role in regulating the metabolic activity of the cell, 
and so the proper function of mitochondria is important for skeletal muscle healthy ageing. However, 
mitochondrial impairment during ageing is poorly understood and a better understanding of skeletal 
muscle metabolism during ageing is required to guide research in many fields (1). Skeletal muscle 
phosphorus (31P) magnetic resonance spectroscopy (MRS) can provide non-invasive insight into the 
metabolic activity, pathophysiology and oxidative state of muscle tissue. In particular, the kinetics of 
phosphocreatine (PCr) recovery following exercise can provide a direct quantification of the rate of 
mitochondrial adenosine-triphosphate (ATP) synthesis, since PCr resynthesis after exercise is purely 
oxidative. Previous work found larger PCr depletion in a group of elderly participants during exercise, 
whilst showing similar PCr recovery rate constants to those observed in a group of young volunteers 
(2). However, this study used global “pulse-acquire" spectroscopy without localisation to a specific 
muscle group, while only looking at a single bout of exercise. To build on this work, we have used a 
localised 31P acquisition which should isolate the acquired data to that from the actively working 
muscle. In addition, we have utilised a second bout of exercise shortly after the first bout, to 
potentially reveal new biologically important differences between the young and the elderly, to better 
understand the changes that occur in metabolic response mechanisms with ageing.  
 

Methods: A total of 24 healthy volunteers, 13 young (28 ± 6 years) and 11 elderly (70 ± 6 years) were 
enrolled to this study. All scanning was performed using a Siemens Prisma 3T MRI system with an MR 
compatible ergometer and a dual tuned 31P/1H surface coil. The workload was set to 25% of the 
individual participant’s maximum voluntary contraction (MVC) and an exercise protocol consisting of 
1 min of rest for baseline data, followed by plantar flexion exercise at 0.5 Hz for 4 min and then 7 min 
of recovery was undertaken (Fig 1). Depth-resolved in vivo spectroscopy (DRESS) data was 
continuously acquired during this period with the following parameters (TR 2s, Pulse Length 600 μs, 
Flip angle 42o, bandwidth 2000 Hz, slab thickness 20 mm, positioned obliquely over the gastrocnemius 
medialis muscle (3)). Following a further 7-minute rest period where no data was acquired, the 
dynamic 31P protocol was repeated a second time (Fig 1).    

Fig. 1. MRS acquisition protocol for localised DRESS sequence on the gastrocnemius muscle 
 
Data analysis was undertaken using the OXSA toolbox (4). After applying saturation correction factors, 
metabolite concentrations of PCr, Pi, and PDE were calculated using the γ-ATP peak as an internal 
concentration reference, assuming a stable cellular ATP concentration of 8.2 mM (5). The 
intramyocellular pH was calculated according to the modified Henderson–Hasselback equation, based 
on the chemical shift of PCr and Pi signals. The time constant of PCr resynthesis (tau) was calculated 
by undertaking a mono-exponential fit of the PCr recovery curve. The maximal rate of oxidative 
phosphorylation (Qmax) was calculated according to the adenosine diphosphate (ADP)-based model 
of Michaelis and Menten (6). Datasets were excluded based on the pre-defined exclusion criteria: tau 
>250 s, PCr drop < 15%.  Statistical analysis (Student’s t-test followed by Bland-Altman plots) was 



 

 

undertaken in Excel, to assess the levels of agreement between the young and elderly volunteers and 
between the first and second bouts of exercise. 
 
Results: The PCr  measurements show no significant difference between exercise 1 and 2, and when 
comparing young to elderly. The Tau and Qmax also show no significant difference  between exercise 
1 and 2.  Bland Altman graphs show a good agreement between the first and second exercise, in both 
age groups  (Fig. 2). 

Fig. 2. Graphical representations of the 31P-MRS data for both young and elderly participants, before and after 
exercise. Box plots and Bland Altman graphs are shown, with letters A (Tau), B (PCr drop), and C (QMax). 

 
Discussion: In our study, we found no significance difference between exercise 1 and 2, for both age 
groups, when looking at PCr drop (%), Tau (s), and Qmax (mM/s). However, a previous study by Wray 
et al. showed a greater drop in PCr following exercise in the elderly compared to the young (2). This 
difference may be because we have used a localised MRS approach or because we standardised the 
workload to 25% of the individual subjects MVC rather than specifying a set workload (~5W in the 
study by Wray et al). Furthermore, we have looked at two consecutive bouts of exercise instead of just 
one, allowing us to further investigate the recovery of young and elderly participants following a 
metabolic stress. Through this work, we have demonstrated that overall oxidative capacity in our 
healthy elderly population does not appear to be blunted. This finding is supported by the work of 
Wray et al (2), where they showed that the time constant (τ) of PCr recovery did not differ between 
the young and old.  
Conclusions: In our study, the metabolic parameters (PCr depletion, Tau and Qmax) were shown to 
have no significant differences between two sequential bouts of exercise in either young or elderly 
volunteers. Our results show that healthy elderly participants have a similar biological response to 
dynamic exercise when that exercise is scaled to the individuals MVC. In further work, we are exploring 
patient groups to assess how peripheral muscle metabolism is affected by disease.  
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Introduction: In addition to conventional parametric mapping that use the spin-lattice (T1) and spin-
spin (T2) relaxation mechanisms, a new native image parametric mapping method using spin-lattice 
relaxation in the rotating frame (T1𝜌𝜌) has been recently described. T1𝜌𝜌 contrast can be acquired when 
the magnetization is prepared with the spin-lock (SL) pulse and is followed by the image acquisition 
sequence. T1𝜌𝜌 relaxation is sensitive to the low-frequency (Hz-kHz) 1H motion; therefore, it can be 
used to investigate the exchange of protons between water and macromolecules [1]. We aimed to 
investigate the use of T1𝜌𝜌 MRI for detecting myocardial changes in acute takotsubo cardiomyopathy 
patients. Takotsubo cardiomyopathy is a temporary and severe left ventricular dysfunction caused by 
extreme emotional or physical stress [2], that confers significant mortality and morbidity. 
Methods: After informed consent, takotsubo cardiomyopathy patients (n=51) and healthy volunteers 
(n=15) were scanned using a 3.0 T MRI scanner (Achieva dStream, Philips, Amsterdam, Netherlands). 
An electrocardiogram (ECG) triggered imaging sequence starts with a SL pulse (90x-SLy-180y-SL-y-90-x) 
which is followed by a breath-held single-shot balanced steady-state free precession (bSSFP) image 
acquisition to acquire equidistant short axis images of basal, mid, and apical segments of the left 
ventricle. Takotsubo cardiomyopathy patients had a follow up scan after 12 weeks. The quantitative 
analysis of the T1𝜌𝜌 maps was performed using the Philips IntelliSpace Portal software. The regions of 
interest were selected manually by defining the endocardial and epicardial borders of the 
myocardium.  
Results: Figure 1 shows T1𝜌𝜌-weighted images with different SL times within a single breath-hold and 
acquired corresponding T1𝜌𝜌 map. The quantitative analysis of T1𝜌𝜌 maps showed that compared to 
healthy controls, in takotsubo cardiomyopathy patients, there was a significant increase in T1𝜌𝜌 during 
acute presentation, which improved at 12 weeks from baseline but remained significantly increased 
at both mid-cavity and apical levels of the left ventricle (Figure 2). 

 
Fig. 1. Images of myocardium acquired with different SL times: (A)-(F) 0.75 ms, 8 ms, 16 ms, 24 ms, 32 ms, 40 
ms and (G) the corresponding T1𝜌𝜌 map.  

 
 
 
 
 
 
 
Fig. 2. Comparison of T1𝜌𝜌 values for the 
base, mid and apical segments for takotsubo 
patients and healthy volunteers (ns (p>0.05), 
*(p≤0.05), **(p≤0.01), ***(p≤0.001)). 
 
 
 
 
 



 

 

 
Discussion: Takotsubo cardiomyopathy is associated with myocardial oedema in the mid and apical 
segments. T1𝜌𝜌 mapping is also able to detect this myocardial oedema, which is intense at presentation 
and shows part-recovery after 12 weeks follow-up in the mid and apical segments compared to 
healthy volunteers.  
Conclusions: T1𝜌𝜌 MRI has a potential to detect left ventricular myocardial oedema. 
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Introduction: Zero echo-time (ZTE) MRI is an advanced imaging method that reduces the time 
between radiofrequency excitation and data collection to near zero. ZTE can hence capture signals 
from short-T2 tissues before they decay. Its fast imaging times, silent scanning, and resistance to 
artifacts make it ideal for imaging cortical bone without the need for ionizing radiation. ZTE MRI can 
be a feasible alternative to CT scans, providing a ‘one-stop-shop’ solution for imaging both hard and 
soft tissues and reducing the need for multiple scans. This study used ZTE to obtain CT-like images 
from ZTE MRI in a Down’s Syndrome (DS) study and identify calcifications within the choroid plexus, 
basal ganglia, and pineal gland which are known to occur from CT [1] 
Methods: Pseudo-CT images were generated from proton density weighted ZTE images acquired from 
37 patients and 12 healthy controls. The ZTE images were obtained with a matrix size of 200x200, a 
voxel size of 1.5x1.5x1.5 mm3, a TR of 588.04 ms and a bandwidth of ±62.5 kHz. Following Wiesinger 
et al., after bias field correction, normalization, and registration to MNI space, the images were 
segmented into three categories: bone, soft tissue, and air. This was achieved through thresholding 
and morphological refinements. Standard Hounsfield replacement values were assigned for air (-1000 
HU) and soft tissue (+42 HU), while a continuous linear mapping technique was used for bone [2].  The 
analysis further involved ROI masking, voxel counting, and statistical analysis. We used masks from 
the Automated Talairach Atlas project for the basal ganglia (ATAG), the probabilistic atlas for the 
pineal gland derived by Razavi et al. [3] and the Harvard Oxford Lateral Ventricle atlas from FSL for the 
choroid plexus. Voxel counting was performed with a threshold of 43. A two-proportion z-test was 
used for the statistical analysis, comparing the proportions of calcifications in patients and controls. 
Results: The obtained ZTE-derived pseudo-CT images resemble true CT images and calcifications, 
where present, are visible. (Fig.1). 35% of the patients present with pineal gland 
anomalies/calcifications (p = 0.047), 18% with choroid plexus calcifications (p=0.102), and none with 
calcification within the basal ganglia. Only one control presented with pineal gland calcification, and 
none with choroid plexus or basal ganglia calcifications.  
 
 
 
 
 
 
 
 
 



 

 

 

    
Fig. 1. a) i. ZTE image of DS patient; ii. pseudo-CT image obtained from ZTE data for the same patient before 

brain extraction. b) Enlarged ZTE and pseudo-CT images showing pineal gland calcification 
 
Discussion: The results indicate a statistically significant higher incidence of pineal gland 
anomalies/calcifications in the patient group, while choroid plexus calcifications were not significantly 
different, and no calcifications were observed within the basal ganglia.  
The method used for creating pseudo-CT images and identifying calcifications seems to be effective, 
as it allowed the detection and quantification of calcifications in the desired regions of the brain. 
However, a comparison with a previous CT study of Down's syndrome, reveals some discrepancies in 
the location and frequency of calcifications. In particular, the CT study reported a high incidence 
(10.7%) of bilateral calcification of basal ganglia in Down's syndrome, which was not detected in our 
pseudo-CT images [1]. This may be due to the different imaging modalities, insufficient sensitivity in 
the ZTE pCT sequence, the different age groups of the patients, or the different methods of 
calcification detection and quantification.  
 
Conclusions: The method described enables MR to pseudo-CT image conversion in DS patients, in a 
robust, and fast manner, allowing for the detection of potential calcifications. However, differences 
to CT in terms of the location and frequency of calcifications, especially in the basal ganglia warrants 
further investigation and validation with larger and more diverse samples. Data collection in the 
control group is ongoing, which may increase the significance levels of our comparisons. 
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Introduction: Quantitative conductivity mapping (QCM) is a non-invasive MRI technique used to 
calculate maps of electrical tissue properties from multi-echo gradient-echo (GRE) phase images. 
Multiple-echo echo-planar imaging (ME-EPI) has proved useful for rapid quantitative susceptibility 
mapping [1]. Therefore, we investigated the applicability of ME-EPI for accelerated QCM. The phase 
of our ME-EPI data suffered from slice-to-slice inconsistencies: here, we tested three methods to 
remove these inconsistencies. 
Methods: We acquired 2D ME-EPI brain images using a sequence with multi-echo capability [2] in one 
healthy volunteer on a 3T Siemens Prisma using eight combinations of multiband and GRAPPA 
acceleration: MB=1,2,3,4 and R=2,4.  Each acquisition had 15 repeated volumes with 1.6 mm isotropic 
resolution, matrix size=150x144x120, BW= 1852 Hz/Pixel, FA=90°, 4 TEs, TE1/ΔTE=12.80/39.80 ms and 
TR=5440 to 21700 ms for R=2, and  TE1/ΔTE=15.20/21.25 ms and TR=3218 to 12811 for R=4. A 3D ME-
GRE image of the same volunteer was acquired as a reference, with 1 mm isotropic resolution, matrix 
size=192x256x176, BW= 280 Hz/Pixel, FA=15°, 5 TEs, TE1/ΔTE=4.92/4.92 ms, TR=30 ms, and R=3.  
QCM was performed using a surface-integral-based pipeline optimized for the GRE sequence, that 
provides accurate conductivity (σ) for low-SNR images [3]. The phase offset at TE=0 (φ0) was 
extrapolated from a non-linear fit of the complex data [4] over all echoes from the 5th volume. φ0 
wraps were removed using SEGUE [5]. Brain masks were calculated using BET [6] on the third-echo 
magnitude images and eroded by 2 voxels.  QCM used large kernels (differentiation kernel: [11,11,11], 
surface integral kernel: [20,20,20]) with magnitude weighting and segmentation-based edge 
preservation [7,8]. The third-echo and first-echo magnitude images were used for magnitude-
weighting and segmentation of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) 
using FSL [9], respectively. 
To try to remove slice-to-slice inconsistencies in the unwrapped EPI φ0, we: 1) subtracted the average 
φ0 in each axial slice, 2) used a phase inconsistency correction [10], and 3) subtracted a 2D in-plane 
linear fit in each slice.  
Results and Discussion: Similar φ0 inconsistencies have been observed for this sequence [11], which 
may be caused by the coil-combination method as it allows multiband acceleration. Figure 1 shows 
the effect of the different φ0 inconsistency correction techniques. Correction 1) substantially reduced 
the inconsistencies including the bright band inferior in the brain while 2) and 3) were not effective. 
The conductivity maps obtained from all the φ0 maps were compared using the percentage of voxels 
in the brain mask with positive conductivities (Pσ>0). For the EPI data, the percentages were averaged 
over the 8 EPI images with different combined acceleration factors. QCM from uncorrected EPI φ0 had 
unphysical σ<0 in many areas (Pσ>0=59.8.0%). After correction 1), EPI QCM had Pσ>0=75.7%, lower than 
GRE QCM (Pσ>0=89.9%). Corrections 2) and 3) did not improve QCM. 
Figure 2 shows boxplots comparing corrected EPI (correction 1) and GRE σ in GM, WM, and CSF. Tissue 
probability maps for the segmentations were thresholded at 0.5 to exclude voxels with large partial 
volume contributions. The resulting segmentations were eroded by 1 voxel and negative values and 
outliers were removed. The mean CSF and WM σ in the corrected EPI QCM are closer to literature 
values [12] than those in the GRE QCM. A t-test between EPI and GRE σ was computed for the 3 
regions. In all three regions, EPI and GRE σ were significantly different (p<0.001). 



 

 

 
Fig. 1. Unwrapped φ0 (top), and corresponding QCM (bottom), acquired using GRE (a) and uncorrected EPI 

(MB =1, R=4) (b) and showing the effect of subtracting the slice average φ0 from each axial slice (c), applying a 
phase inconsistency correction (d), or subtracting a 2D linear fit from each slice (e) to correct for slice-to-slice 

inconsistencies. 

 
Fig. 2. Conductivity distributions in three regions, CSF, GM, and WM, in QCM from corrected EPI (correction 1, 
MB=1, R=4) and reference GRE acquisitions. The mean conductivity and the literature value measured ex-vivo 
[12], are shown in green and pink, respectively. The results of t-tests between EPI and GRE σ in the 3 regions 

are also displayed, * (p<0.001).    

Conclusions: We have performed conductivity mapping on phase data acquired using multi-echo 
gradient-echo EPI with different acquisition parameters. A simple method to correct for slice-to-slice 
inconsistencies in EPI φ0 maps increased the percentage of voxels with positive conductivity values 
(Pσ>0) by 15.9% on average (across all MB and R). QCM with the highest Pσ>0=77.4% was obtained for 
the ME-EPI acquisition with MB=1 and R=4, which still contained more unphysical σ values than the 
reference GRE result (Pσ>0=89.9%). In the three regions, WM, GM, and CSF, ME-EPI conductivity values 
were significantly different from GRE conductivity values, with the mean CSF and WM σ closer to ex-
vivo values. This rapid ME-EPI QCM technique could facilitate clinical applications in the future.  
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Introduction: Magnetic resonance fingerprinting (MRF) [1] is a technique to simultaneously obtain 
multiple MR parameter maps from a single acquisition. This acquisition consists of multiple images 
obtained with 𝑡𝑡 varying flip angles (FA) and repetition times (TR) resulting in a signal matrix 𝑆𝑆 ∈ ℂ𝑀𝑀×𝑡𝑡 
for the 𝑀𝑀 voxels in the object, which contains the recorded magnetization for each FA and TR pair. In 
its simplest form, the reconstruction of MRF data then involves voxel-wise pattern matching of the 
recorded signal vectors to a dictionary 𝐷𝐷 ∈ ℂ𝑁𝑁×𝑡𝑡 of signals covering the 𝑁𝑁 MR-parameter 
combinations of interest, precomputed via Bloch equations. The result of the pattern matching step 
is the dictionary entry that maximizes the magnitude of the complex inner product with the voxel 
signal, and its parameter values are then assigned to that voxel. 
MRF is highly flexible and allows to encode a multitude of parameters beyond relaxation times, such 
as static off-resonance 𝛿𝛿𝐵𝐵0, relative transmit-field strength 𝐵𝐵1+, among others [2]. However, the 
number of entries in the dictionary 𝑁𝑁 grows exponentially with the number of parameters, which can 
lead to pattern matching becoming a bottleneck of MRF reconstruction. 
Previous proposals to accelerating the dictionary search included compression in the time dimension 
by singular value decomposition (SVD) [3] or grouping dictionary entries by similarity, performing SVD-
compression group-wise [4] and then only searching within the most promising groups. While these 
approaches showed promising results, efficient implementations harvesting the full potential of 
current graphics processing units (GPUs) are rare. In this work, we extended Faiss [5], a highly 
optimized library for large scale similarity search to be compatible with complex vectors and applied 
its grouped search to MRF-based OPTIMUM [2] for low-field multiparametric MRI. 
Methods: Complex-vector support was added to the Flat and IVFFlat index types of Faiss. The Flat 
index corresponds to an exhaustive brute-force dictionary search based on matrix multiplication, 
whereas the IVFFlat index performs 𝑘𝑘-means-based clustering on the dictionary atoms to form groups 
of similar entries of which only a subset is considered during a search. The IVFFlat-index search 
strategy is thus like the one described by Cauley et al.[4], but without employing SVD within groups. 
Clustering must be performed once on the dictionary before the clustered search may be used. 
The grouped search has two parameters: the number of groups 𝑘𝑘 to form during clustering, and the 
number of most similar groups 𝑝𝑝 to probe during search. We evaluated our search engine by 
performing a survey of the parameters 𝑘𝑘 and 𝑝𝑝. The value for 𝑘𝑘 was chosen proportional to √𝑁𝑁, 
while the values of 𝑝𝑝 were progressively incremented from 𝑝𝑝 = 1 leading to slower but more 
accurate searches. Incrementing 𝑝𝑝 was stopped when brute-force search duration was approached. 
We identified optimal operating points based on a metric 𝐹𝐹 computed as the fraction of voxels for 
which the approximate search returned a different dictionary entry than the brute-force search, 
constrained to those voxels for which the brute-force search exceeded an inner product magnitude 
threshold. This thresholding served to ignore voxels that only contain noise. An operating point is 
considered optimal if there exists no faster one reaching an equal or lower value for 𝐹𝐹. 
Our evaluation dataset was acquired with a 3D bSSFP-based optimized MRF sequence (OPTIMUM) at 
100 mT in a healthy volunteer, after informed consent was obtained. The dataset size was of 90×81×15 
(109350 voxels) with 𝑡𝑡 = 18 per voxel for a 8.5 min total acquisition time.  
Two dictionaries with parameters 𝑇𝑇1, 𝑇𝑇2, 𝛿𝛿𝐵𝐵0 and 𝐵𝐵1+-fraction with different resolutions were used 
having 4.4 and 35 million entries, respectively. All results were obtained on a computer with an Intel 
i9-10920X 12-core CPU, 128 GiB of RAM and an Nvidia RTX 3090 GPU. 
Results: Brute force dictionary search required 15 s, and 123 s for the two dictionaries. Thresholding 



 

 

of the brute force results leads to roughly 20000 voxels remaining for calculating the 𝐹𝐹 metric. The 
optimal operating points for the clustered search are summarized in Fig. 1. The larger dictionary 
affords significantly higher acceleration for all evaluated tolerance values with peak acceleration 
factors roughly 3 to 4 times higher for the larger dictionary. 

 
Fig. 3 Fastest configurations meeting the specified error tolerance as a function of the number of clusters 𝑘𝑘 
given in units of √𝑁𝑁. Colors indicate the different tolerance of 𝐹𝐹 achieved by the plotted configuration. 
The 𝑇𝑇1 and 𝑇𝑇2 parameter maps reconstructed with the brute force search in the larger dictionary are 
displayed in Fig. 2, together with the errors introduced from the accelerated search. No different 
voxels are apparent in the shown slice for an acceleration factor of 183, while there are 5 isolated 
voxels with single-step errors at 292× acceleration, and 78 at 429× (not all are visible in the figure as 
some of the errors differences were exclusively in the omitted 𝛿𝛿𝐵𝐵0 and 𝐵𝐵1+ parameters). 

 
Fig. 4 Central axial slice from the in-vivo hand data reconstructed with different search parameter 
configurations. The increasing acceleration factors correspond to error tolerances of 0.0005, 0.005 and 0.05. The 
color scales of the errors are discretized in dictionary steps and show 5 steps in both directions. The error values 
for 𝑇𝑇2 that exceed the color scale in the fourth column are 2.0, 0.5 and -0.4. 
Discussion: Our proposed search engine allows significant acceleration of dictionary search with 
greater acceleration potential for larger dictionaries. Up to two orders of magnitude acceleration was 
achieved with virtually identical parameter maps. Further accelerations are possible at a cost of larger 
parameter errors. Our approach only addresses search speed and does not reduce memory 
requirements, however the compatibility with global SVD-compression is maintained. Further, a one-
time clustering step is required prior to search. The matching engine was evaluated on comparably 
short MR fingerprints as produced by our balanced MRF implementation, and potential benefits for 
longer fingerprints and other sequence designs will be subject to future research. 
Conclusions: We demonstrated a software implementation of an approximate MRF dictionary search 
engine that can effectively harness the computational power offered by modern GPUs. Our engine 
translates the benefits of group matching [4] into the age of GPU-computing. 
Acknowledgements: We are grateful to the Swiss National Science Foundation for funding this work 
(Grant No. 186861 and 198905). 
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Introduction: Fast field-cycling nuclear magnetic resonance (FFC-NMR) relaxometry is a low-field 
technique that can provide unique insights into molecular dynamics of biological samples, with 
potential translation to in vivo applications [1]. FFC relaxometers can rapidly switch between different 
strengths of an applied magnetic field to facilitate the measurement of the longitudinal relaxation 
time, T1, or rate, R1 (1/T1), as a function of magnetic field strength, which is plotted as an NMR 
dispersion (NMRD) profile. This profile is sensitive to changes in tissue architecture, which is one of 
the key events that lead to cancer development and metastatic progression. Therefore, the physical 
information contained within the NMRDprofile may prove to be a rich source of diagnostic and 
prognostic information. The aim of this study is to describe the physical features of R1 NMRD profiles 
from human breast tissue samples (cancerous and normal) and use mathematical models to 
investigate how numerical parameters, derived from these profiles, could potentially serve as 
biomarkers for breast cancer detection and relapse risk stratification.  
Methods: A total of 148 fixed tissue samples were acquired, with ethical approval, from the tumour, 
peritumoral zone and distant normal regions (non-adipose and adipose) from twenty female breast 
cancer patients at the Aberdeen Royal Infirmary, Scotland. The pathology reported included 
Nottingham Prognostic Index (NPI) scores for each patient. The NPI is an internationally validated 
clinicopathological tool that is used for risk stratification in breast cancer patients and based on the 
score, patients can be grouped into one of five prognostic categories: excellent, good, moderate I, 
moderate II and poor. The patients in our study belonged to the latter three categories. NMRD profiles 
were acquired from each tissue sample using the benchtop relaxometer (SMARtracer; Stelar S.r.l., 
Mede, Italy). Each sample was scanned with 30 different evolution fields in the 0.001-8 MHz proton 
Larmor frequency range. The analysis of R1-dispersion profiles was achieved using the software, 
Fitlike2 [2]. R1-dispersion profiles were analysed by curve fitting, using the 2-segment power model 
(Fig. 1) and the following model parameters were exported: slope at low (αlow) and high (αhigh) fields, 
the transition frequency between the segments (ν) and the vertical off-set of the whole dispersion 
profile (A). All statistical analysis was performed using GraphPad Prism v9.0 and model parameters 
were evaluated between different regions of breast tissue and different NPI categories using a One-
way ANOVA/Kruskal-Wallis test (significance p<0.05, 95% confidence interval). 
Results: Clear and distinct dispersion profiles were observed when sampling each of the individual 
regions of breast tissue (Fig. 2). Tumour tissue could be significantly distinguished from that of the 
peritumoral zone by A (p<0.05) and ν (p<0.0001); tumour tissue could be significantly distinguished 
from the distant normal tissue by A (p<0.0001) and ν (p<0.0001) and peritumoral tissue could be 
significantly distinguished from the distant normal tissue by αhigh (p<0.05) and ν (p<0.001). We were 
also able to quantify differences between the dispersion profiles of patients within different 
prognostic categories when the distant normal adipose tissue was sampled. It appeared that αlow was 
significantly smaller in Moderate I compared to poor patients (p<0.05). Furthermore, a reduction in 
both αlow and A appeared to correspond to a worse prognosis, although this was only significant for 
the latter (Pearson r = -0.3669, n= 36, p= 0.0277).  
Discussion: Based on an initial qualitative analysis of tissue dispersion profiles, it was demonstrated 
that field-cycling relaxometry could distinguish normal and cancerous breast tissue at low fields, which 
has previously been demonstrated [3-6]. These NMRD profiles represent the average water dynamics 
in the both the intracellular and extracellular microenvironments. At the lowest magnetic fields, < 105 



 

 

Hz, tumours displayed shorter relaxation times compared to patient-matched normal breast tissue. 
However, for magnetic fields > 105 Hz, tumour relaxation times became longer than that of the normal 
tissue. Based on quantitative analysis, our study demonstrated the utility of a variety of numerical 
parameters, derived from NMRD profiles, to assist with breast tumour detection, demarcating surgical 
margins and informing on patient prognosis. NMRD profiles from the normal adipose tissue were 
significantly different depending on the patients’ NPI score. This finding suggests that the earliest 
biophysical changes related to disease progression may occur in the periphery rather than the tumour 
itself. 
Conclusions: This study is the first step to systematically establish quantification of differences in the 
NMRD profiles obtained from breast cancer tissue samples. Overall, we have shown that NMRD 
profiles may house novel quantitative diagnostic and prognostic biomarkers of breast cancer. Whilst 
our study has employed the benchtop relaxometer to study ex vivo tissue samples, our findings may 
have translational potential when combined with Field-cycling imaging that has been developed at the 
University of Aberdeen. The first in vivo T1 measurements from breast cancer patients will be 
presented by another member of our team (Dr Vasiliki Mallikourti). 
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Figure 1: 2-segment power model equation 
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Figure 2: Average R1 dispersion curves (log/log scale), with standard deviation error bars, from 
breast tissue, obtained from the region of the tumour (n= 33), peritumoral zone (n= 38) and normal 
regions (both non-adipose (n= 25) and adipose (n= 36)). 
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Introduction: Prostate cancer (PCa) is the second most common cancer in men and accounts for 7.1% 
of all cancer cases globally [1]. In the United Kingdom, prostate cancer is projected to become the 
most commonly diagnosed of all cancers, and it is predicted that could be around 85,100 new cases 
of prostate cancer every year by 2038-2040 [2]. Survival largely depends on detecting early-stage 
tumours, which often have an indolent course and may require minimal treatment. However, prostate 
screening by digital rectal examination (DRE) and prostate-specific antigen (PSA) measurement may 
lead to overdiagnosis and results in over-treatment. It is estimated from two largest prostate 
screening trials that between 17% and 50% of prostate cancers are overdiagnosed [3]. The challenge 
is differentiating between cancers that may never have become evident without screening from 
clinically significant tumours requiring treatment. Improved imaging technology could lead to better 
earlier detection of clinically significant tumours, improve staging and better inform appropriate 
treatment and follow-up. The aim of this study is to explore potential biomarkers in prostate cancer 
using the novel Field Cycling Imaging (FCI). 
Methods: This prospective study was approved by the Grampian biorepository scientific committee 
(tissue request- TR000283) with the informed consent of all patients. From April 2022 to February 
2023, we scanned 17 ex vivo prostates surgically removed as a standard of care for prostate cancer. 
The excised prostates were scanned fresh using a vertical solenoid coil for R.F. transmission and signal 
detection. For each sample, 20 single-slice images were acquired using a field cycling saturation 
sequence at four evolution fields (200, 20, 2 and 0.2 mT) and five evolution times. The slice thickness 
was set to 10mm and the in-plane resolution to 1.55 mm, depending on the FOV, with a matrix size of 
90 x 90. The total duration of the FCI examination was 45 min. Histology analysis will be used for 
validation. Data analysis was done in MATLAB using in-house software [4]. The images were filtered by 
using the BM3D image denoising method [5]. R1 (1/T1) quantification was obtained using the 
exponential model derived from the Bloch equations. The fitting of R1 NMRD profiles and the histology 
validation work is still in progress at the time of writing this abstract. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
Results: 

 
Fig. 1. Typical FCI data from excised prostate gland from a patient presenting with prostate cancer. The 

evolution times are reported in ms along the columns, and the evolution fields in mT along the rows. 
 

Discussion: This is the first-ever measurement of R1 dispersion in patients with prostate cancer. The 
preliminary results showed that FCI can have a possibility to differentiate between prostate tumours 
and healthy tissue without the use of contrast agent at low field strengths. However, these results will 
be validated by comparing the contrast in R1 maps with the histological diagnostic sections. Correlating 
FCI data of whole explanted prostate glands with anatomical and histopathological features observed 
on routinely prepared histology sections will allow us to define FCI-generated characteristics of 
prostate cancers and map these with tumour localisation, tumour volume, Gleason grade and 
pathological stage.  
Conclusions: This work showed a potential new biomarker of prostate cancer based on R1 dispersion 
maps -extended to low magnetic fields -below 200 mT-. Further investigation is ongoing to contribute 
to a deeper understanding of prostate cancer characterisation using ultra-low field technique. 
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Introduction: Small vessel disease (SVD) results in white matter (WM) changes, affecting cognitive 
ability, and in severe cases, can lead to forms of dementia and stroke. New non-invasive imaging 
approaches have the potential to facilitate routine monitoring of SVD progression. Field-cycling 
imaging (FCI) is an emerging whole-body low-field MRI technology being developed at the University 
of Aberdeen [1]. FCI seeks to uncover more information regarding WM changes by acquiring 
multidimensional data sets at varied magnetic field strengths. By applying data-driven AI analysis 
approaches, we seek to learn patterns in the multi-field FCI data on what features constitute presence 
of SVD. The aim of this preliminary work was to compare pre-processing strategies to inform AI-based 
classification of SVD. 
Methods: Data sets were included from the first 20 participants recruited into an ongoing study with 
clinically confirmed moderate or severe SVD (N=10) and age-matched healthy volunteers (N=10). 
Participants underwent 3T MRI (Philips 3T dStream) and FCI scans. For each participant, 20 FCI images 
were acquired for a single slice across 4 magnetic field strengths of 0.2, 2, 20 and 200 mT and 5 
logarithmically spaced evolution times, resolution of 3.1 x 3.1 x 10 mm3. The magnitude of image 
contrast between regions of WM and SVD was compared across the multi-field FCI images, using co-
registered WM and WM hyperintensity (WMH) regions of interest generated from 3T MRI data [2]. A 
selection of 4 pre-processing pipelines were applied, seeking the most effective to run AI-based 
classification [3]. Each pipeline was evaluated by training accuracy. Saliency maps were used to 
provide insight into which aspects of FCI images the AI was using to inform classification. 
Results: There was a significant difference between image contrast values obtained from the 20 FCI 
images (Friedman Test, P < 0.001), (Fig.1). Images obtained at 0.2 mT, 75.3 ms and 20 mT, 158.2 ms 
yielded greatest image contrast between WM and SVD regions (Fig.2). Training accuracy was not 
increased between use of original images (67%) and denoised images (67%). Use of skull-stripping 
yielded lower training accuracy for both original (56%) and denoised images (50%). Visual assessment 
of saliency maps appears to show more highlighted regions within brain tissue for use of denoised 
data (Fig.2). 
Conclusions: This study demonstrates the potential of data-driven analysis to be used to interrogate 
field-cycling MRI brain imaging data. Future studies will use larger data sets to investigate the 
performance of different AI-based classification models using FCI data. 
Acknowledgements: We would like to thank the participants who took part in this study. The study is 
funded by Chief Scientist Office research grant TCS/19/44.  
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Fig. 1.  Cohort mean ± standard deviation of magnitude image contrast obtained between white matter and white 
matter hyperintensity regions. The image contrast is shown for each field-cycling MRI image obtained at each 
evolution time and evolution field.   
 
 
 

 
 

 
Fig. 2.  Classification model highlighted regions of interest for original and denoised field-cycling MRI images 
of one patient. Saliency maps shown for a number of field-cycling MRI images obtained at different evolution 
times and evolution fields. Bounding boxes used to annotate saliency maps where map value above a given 
threshold. Corresponding tissue label from 3T MRI image of same patient is shown. 
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Introduction: The function of the placenta relies on maternal blood, which is rich in oxygen and 
nutrients, bathing the entire surface of the fetal villi to allow exchange. It has been shown that healthy 
placentas exhibit slow, uniform flows and homogeneous oxygenation in order to facilitate this 
exchange [1]. There is a pressing need for a simple clinical measure that provides sensitivity to the 
distribution of oxygenated blood over the whole placenta. It has been shown that T2*, which is 
sensitive to the variation in oxygenation and absolute oxygenation as well as other factors, is a 
potential marker of placental compromise [2]. Phase data (and in particular susceptibility mapping) 
provides an alternative and independent measure of oxygenation from within the placenta. The aim 
of this work is to develop SWI images of the placenta combining T2* and phase data, and ultimately 
to test whether SWI will provide additional sensitivity to the absolute oxygenation as well as the local 
variation in oxygenation.  
 
Method: Six participants, 35 ± 5 weeks pregnant were imaged at 3T using echo planar imaging at four 
echo times: 20ms, 25ms, 30ms and 35ms. The decay of the signal magnitude across the echo times 
was used to generate T2* maps using a weighted, linear least squares fit to the model: 

ln(𝑆𝑆) =  ln(𝑆𝑆0) −  
𝑇𝑇𝑇𝑇
𝑇𝑇2∗

 

The phase was then unwrapped, subtracted from the average of the slice to retain the variation then 
normalised to between 1 and -1. This was combined with the T2* maps to create susceptibility 
weighted images. 
 
Results: Susceptibility weighted images were obtained for all six participants (figure 1). Histograms of 
T2* and SWI across the entire placenta ROI were made (Figure 2). 

 

 
Fig. 1. Masked placenta taken from the transverse plane with maternal side on the left and fetal side on the 

right, a) T2* map, b) phase map, c) susceptibility weighted image. 



 

 

 

 
Fig. 2. A) Histogram of T2* values for one subject and B) associated SWI weighting. 

 
Subject T2* mean T2* FWHM SWI mean SWI FWHM 
001 33.5 15 ± 1 0.02 2.0 ± 0.5 
002 64.4 27 ± 1 -0.19 5.5 ± 0.5 
003 52.7 25 ± 1 -0.42 5.0 ± 0.5 
004 58.5 24 ± 1 -0.40 5.5 ± 0.5 
005 42.4 22 ± 1 -0.48 5.0 ± 0.5 
006 72.2 39 ± 1 -0.20 5.0 ± 0.5 

Table 1. Table showing the mean and full width half maximum of the T2* and SWI histograms for each subject. 
 
Discussion: Susceptibility weighting imaging of healthy placentas is feasible and shows a consistent 
distribution between healthy participants. Further work will repeat this analysis using susceptibility 
mapping, consider alternative ways of combining the data and considering the local relationship 
between T2* and susceptibility.    
Conclusions: Susceptibility weighted imaging could provide valuable measures of the mixing of 
oxygenated and deoxygenated blood in the placenta, indicating efficiency of placental function. This 
could help to identify impaired placental function, helping to inform when intervention is needed. 
Acknowledgements: funding for Amy’s PhD is from the EPSRC. 
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Introduction: Quantitative susceptibility mapping (QSM) can be used to calculate the magnetic 
susceptibility of tissues from the MRI signal phase [1,2] and has recently been extended from the brain 
to other regions of the body [3]. QSM also has potential applications in the head and neck (HN); 
however, this anatomical region presents unique challenges for QSM, including fat-water phase 
artefacts, flow effects, physiological motion, and the presence of multiple air-tissue interfaces. For 
tissue susceptibility values provided by QSM to be clinically useful, the acquisition and reconstruction 
process must be repeatable. Previous work has been undertaken to develop an optimized HN QSM 
pipeline [4], and here we present further improvements, incorporating the latest developments in the 
different stages of the QSM reconstruction pipeline, and test the repeatability of the optimized HN 
QSM pipeline. 
Methods: Multi-echo HN QSM images from 10 healthy volunteers (acquired under local ethics 
committee approval as part of a previous study [4]) were used to test the repeatability of 20 different 
QSM reconstruction pipelines. Each subject was scanned in three times per session, for two sessions 
one week apart. Data were acquired on a 3T Achieva system (Philips, Netherlands) with a 16-channel 
HN receiver coil, using a 3D GRE sequence. A coronal orientation with a SENSE acceleration factor of 
2 in the first phase-encoding direction and 1.25 mm isotropic resolution were used. In-phase echo 
timing with four echoes (TE1 = ΔTE = 4.61 ms) was used to reduce fat-water chemical shift effects. 
Multi-echo images were combined using non-linear field fitting [5,6], and in the remaining stages of 
the QSM reconstruction pipeline (phase unwrapping, background field removal, and susceptibility 
calculation) multiple methods were tested based on recent literature [7,8]. Phase unwrapping 
methods tested were: Laplacian phase unwrapping (LPU) [6], a region-growing method (SEGUE) [9], 
and a path-based method (ROMEO) [10]. Background field removal methods tested were projection 
onto dipole fields (PDF) [11] and V-SHARP [12,13]. Susceptibility calculation methods tested were: an 
iterative Tikhonov-regularized inversion (iTik) [2,4], direct Tikhonov-regularized inversion (dTik), FANSI 
[14], Star-QSM [15], Weak-harmonic regularized FANSI [14,16], and L1-QSM [17]. Processing and 
analysis were conducted in MATLAB (MathWorks, Natick, MA). 
Susceptibility maps were reconstructed for a single subject using the previously optimized ‘old’ 
pipeline (LPU, PDF, iTik) [4] and with each stage varied in turn. Regions of interest (ROIs) in the brain 
(thalamus, caudate nucleus, putamen, globus pallidus) and head and neck (parotid gland, 
submandibular gland, and several lymph nodes) were obtained by a combination of automatic 
segmentation using FSL FIRST [18] and manual segmentation (checked by an experienced radiologist).  
Pairwise differences in average susceptibility in each ROI were calculated between scans in the same 
session, or between sessions, and the distributions of these differences were used as a measure of 
intra-session and intersession repeatability, respectively. 
Results: Visual assessment, and distributions of susceptibility values in HN ROIs, were used as an initial 
comparison between different techniques for the three stages of QSM reconstruction. A ‘new’ 
optimized pipeline consisting of ROMEO phase unwrapping, V-SHARP background field removal (An 
optimal V-SHARP kernel size (22 mm) was found by maximising contrast between susceptibility values 
in brain ROIs), and iTik susceptibility calculation, was compared with the ‘old’ pipeline for intra-session 
and inter-session repeatability. Fig. 1 shows the results of this comparison. The new pipeline resulted 
in lower variation in susceptibility values both within and between sessions, in most HN ROIs.  
Discussion: Several HN QSM reconstruction pipelines based on state-of-the-art methods were 
compared before selecting an optimised ‘new’ pipeline which was tested in 10 subjects and found to 
have higher intra-session and intersession reliability than previous best results. Laplacian phase 



 

 

unwrapping is inexact, and prone to underestimating phase contrast in areas of noise or near the 
tissue boundaries; therefore, we used, a path-based method (ROMEO) as it provides exact unwrapping 
with no major errors in tissue areas of interest. Background field removal using PDF led to less 
homogeneous susceptibility values in tissues expected to be uniform, especially close to the edge of 
the mask. V-SHARP appeared to remove residual background fields at the edges more effectively and 
led to more uniform susceptibility values in muscle tissue. Tikhonov-regularized susceptibility 
calculation produced susceptibility maps with minimal streaking artefacts (compared with FANSI and 
L1-QSM), less noise in the neck (compared with Star-QSM), and more expected levels of tissue contrast 
in the brain (compared with WH-FANSI).  

 
Fig. 1. Intra-session (left) and inter-session (right) differences in susceptibility values in HN ROIs, comparing a 

previously optimised reconstruction pipeline (blue) with a new pipeline (magenta). 
 
Conclusions: A wide range of algorithms exist for the different parts of the QSM reconstruction 
pipeline [3,7,8]; however, the factors which confound susceptibility measurements vary throughout 
the body, so, for a given application, it is essential that an optimal reconstruction pipeline be 
determined. We compared a range of QSM algorithms and found a pipeline which produces 
repeatable susceptibility values in key ROIs in the brain and HN region. 
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Introduction: Quantitative susceptibility mapping (QSM) can be used to calculate the magnetic 
susceptibility, 𝜒𝜒, of tissues from the MRI signal phase [1,2]; however, these values are not absolute 
and may be affected by an arbitrary constant shift which is not accounted for by k-space dipole 
inversion [3]. In order to compare susceptibility estimates across subjects or centres, many studies 
reference 𝜒𝜒 values to a reference region [4]. In the brain in healthy subjects, cerebrospinal fluid (CSF) 
in the ventricles is often chosen as the reference region [4]. It is assumed that referencing 𝜒𝜒 values to 
such a region will remove subject-based or scanner-dependent inconsistencies. Background field 
removal is a key stage in the QSM reconstruction pipeline and is highly dependent on the mask region 
chosen. Therefore, we might expect 𝜒𝜒 maps calculated over different mask regions in the same subject 
to have different offsets. However, if both QSMs are referenced to the same region, we might 
hypothesise that any constant shift in 𝜒𝜒 should be corrected. In this work, we show that referencing 
is of mixed efficacy in providing consistent 𝜒𝜒 estimates, if there are differences in mask region. 
Methods: Multi-echo 3D GRE data were acquired from 10 healthy volunteers, as part of a previous 
study [6], on a 3T Achieva system (Philips, Netherlands) using a 16-channel head-and-neck (HN) 
receiver coil. A coronal orientation with a SENSE acceleration factor of 2 in the first phase-encoding 
direction and 1.25 mm isotropic resolution was used. QSM images were reconstructed using the 
following pipeline: A brain mask was generated from magnitude images using FSL BET [7]; multi-echo 
images were combined using non-linear field fitting [8,9]; phase data were unwrapped using ROMEO 
[10]; background fields were removed using V-SHARP with a maximum kernel diameter of 22 mm 
[11,12]; and 𝜒𝜒 was calculated using an iterative Tikhonov-regularized inversion [6]. Deep-brain regions 
of interest (ROIs – thalamus, caudate nucleus, putamen, and globus pallidus) were automatically 
segmented using FSL FIRST [13], and the atria of the lateral ventricles were manually segmented for 
CSF referencing. 
For each subject, two QSM images were reconstructed: once for the whole HN region, and once with 
the brain mask applied. Means and standard deviations of 𝜒𝜒 values in deep-brain ROIs were calculated 
for both data sets 1) without referencing, 2) after subtracting the whole brain mean 𝜒𝜒, and 3) after 
subtracting the mean CSF 𝜒𝜒.  For each ROI, the difference between whole HN and brain-only ROI mean 
𝜒𝜒 was calculated for all three referencing conditions, and two-tailed t-tests were used to test for 
statistically significant differences between whole HN and brain-only distributions of 𝜒𝜒 values for all 
three referencing conditions. All analyses were carried out in MATLAB (MathWorks, Natick, MA). 
Results: The atria of the lateral ventricles had 𝜒𝜒 = 0.044 ± 0.022 ppm (mean ± s.d.) in brain-only QSM, 
and 𝜒𝜒 = 0.047 ± 0.027 ppm in whole HN QSM, with a low variance as expected. The caudate nucleus 
and thalamus had the lowest variance within ROIs and across subjects, so they were selected as 
exemplars for further analysis. Fig. 1 shows the absolute difference in mean 𝜒𝜒 between whole HN and 
brain-only QSMs for both the CN and thalamus and all three referencing conditions. In the CN, 7 of 10 
subjects had statistically significantly different 𝜒𝜒 distributions between unreferenced HN and brain-
only QSMs, reducing to 6 of 10 subjects after CSF referencing. In the thalamus, 6 of 10 subjects had 
statistically significantly different 𝜒𝜒 distributions between unreferenced QSMs, and 6 of 10 subjects 
had different 𝜒𝜒 distributions between CSF-referenced QSMs (not all the same subjects).  It was 
hypothesised that referencing would remove any differences in ROI 𝜒𝜒 values due to differing mask 
regions; however, Fig. 1. shows that this was not consistently the case: In 2 of 10 subjects, referencing 
to CSF reduced the difference in mean 𝜒𝜒 between HN and brain-only QSMs in both ROIs. In a further 
6 subjects, referencing reduced the difference in one of the two ROIs. In the final 2 subjects, 
referencing to CSF increased the difference in both ROIs. Referencing to the whole-brain mean 𝜒𝜒 did 
not significantly reduce differences in 𝜒𝜒 distributions between QSMs in any subjects. 



 

 

 
Fig. 1. Absolute difference in average caudate nucleus (left) and thalamus (right) susceptibility between  

brain-only and whole head-and-neck QSM, for unreferenced, brain-referenced, and CSF-referenced data. 
 
Discussion: Quantitative susceptibility maps were reconstructed from whole HN or brain-only data, 
and 𝜒𝜒 distributions in the CN and thalamus were compared. The mask region (HN or brain only) 
significantly affected 𝜒𝜒 distributions in these ROIs in the majority of subjects. This result is consistent 
with previous studies comparing whole-brain masking to retrospective reconstruction in a smaller 
mask region [14,15]. These differences are likely to be the result of differences in background removal, 
leaving different levels of residual background fields. 
The possibility of using CSF or whole brain referencing to overcome these differences was 
investigated. While group-level differences were not large enough for statistical significance, on the 
individual level, referencing to CSF had mixed results in the majority of subjects. This may be due to 
the previously reported limitations of CSF referencing: partial volume effects, flow artefacts, or the 
presence of the choroid plexus [3,5]. Referencing to the whole brain did not offer any improvement, 
which may be due orientation dependent contributions from white matter [16].  
Conclusions: Referencing to CSF or the whole brain did not consistently overcome differences in QSM 
resulting from changes in masking region. Care is needed when making group-level comparisons of 
susceptibility values, and the choice of reference region should be investigated carefully for every 
application. 
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Introduction: The goal of quantitative magnetic susceptibility mapping (QSM)1 is to reconstruct the 
magnetic susceptibility of tissue from the phase of the MRI signal. Brain QSM is often used to 
investigate, for example, iron content in various deep grey matter regions. Due to the nature of the 
relationship between the measured phase and the underlying susceptibility distribution, it is not 
possible to reconstruct the absolute susceptibility. Rather, we typically (implicitly) reconstruct a 
relative susceptibility with respect to some “mean” susceptibility value that is often assumed to be 
close to the average susceptibility of tissue or water within a region of interest. 
QSM shows good reproducibility and repeatability when comparing scans with matched acquisitions 
and equal processing pipelines2. However, there could be a systematic bias with respect to this implicit 
reference (the “mean” susceptibility). Some argue that trading this implicit bias for an explicit bias 
with respect to a well understood reference region will help reinforce the quantitative nature of the 
susceptibility contrast3. Often, the cerebrospinal fluid (CSF) is used as a reference as it has been shown 
to be largely unaffected by disease or age and has a relatively uniform susceptibility4. 
In clinical QSM studies, the primary means of investigating susceptibility related effects is to compare 
regional mean susceptibility values between groups of patients and healthy controls. Here, we look at 
the influence of reference regions on statistical tests in a QSM study of temporal lobe epilepsy (TLE). 
Methods: We investigated two global reference regions: the whole brain (from the brain mask used 
in the background field removal step in QSM) and one based on variance (RelVar, described below), 
not anatomy; and two local regions: CSF and a white matter region (corpus callosum, CC). The cohort 
consisted of 27 healthy controls, 19 patients with left TLE and 17 with right TLE, with ages ranging 
from 16 to 67 years old5. All subjects were scanned on a 3T GE Discovery MR750 system with a 1mm 
isotropic inversion recovery (T1) fast spoiled gradient-recalled echo sequence (𝑇𝑇𝐸𝐸:𝑇𝑇𝑅𝑅:𝑇𝑇𝐼𝐼  =
3.1: 7.4: 400 𝑚𝑚𝑚𝑚), and a 3D gradient-echo (SWAN) sequence with 0.52 x 0.52 x 1.2 mm voxels, 5 
echoes �𝑇𝑇𝐸𝐸1:𝛥𝛥𝑇𝑇𝐸𝐸:𝑇𝑇𝐸𝐸5  = 12.9: 5: 32.8 𝑚𝑚𝑚𝑚�, 𝑇𝑇𝑅𝑅 =  37.1 𝑚𝑚𝑚𝑚, 𝐹𝐹𝐴𝐴 =  15°. 
Susceptibility maps were reconstructed by a non-linear fit6 of the SWAN complex data, Laplacian 
phase unwrapping7, background field removal with projection onto dipole fields8 and dipole inversion 
using the weak-harmonic non-linear total variation method from FANSI9. 
Statistical tests were performed using Matlab 2023a on 13 brain regions of interest that were 
segmented using geodesic information flows (GIF)10 and HippoSeg11 for the hippocampus. A relative 
variance map was generated using ANTs12 following [13] (and thresholded at the 2nd percentile to 
provide a RelVar reference region), and a whole brain mask was obtained via Otsu thresholding the 
magnitude information14 (which was also used In the QSM pipeline). Outliers were removed from all 
segmentations by removing voxels with susceptibility smaller than the 1st percentile or larger than the 
99th percentile of the susceptibilities within an ROI. Before statistical testing, the data were age 
corrected using a linear fit across control participants in the ROIs. 
Before performing age correction and statistical testing, referencing was performed by subtracting 
the mean susceptibility of each reference region from the whole brain (i.e. all ROIs). Groupwise 
analysis of variance (ANOVA) and post-hoc between-group Tukey’s range testing (corrected for 
multiple between-group comparisons) were performed.  
Results: In Figure 1, groupwise differences can be identified: only ROIs with a groupwise p-value close 
to being significant (< 0.2) are shown in this figure, orange values are considered statistically significant 
(at a 0.05 threshold). In Figure 2 the results of Tukey’s range test can be found for the same ROIs as 
presented in Figure 1. The corpus callosum (CC) has a significantly between group difference, which is 



 

 

Fig. 1. Groupwise analysis. P-values from one-way ANOVA between the means of the three groups of subjects 
(healthy control, left- and right-temporal lobe epilepsy). The p-values are for the null hypothesis that the means 
of the groups are equal. P-values below 0.05 are coloured in orange to signify significant between group 
differences. Rows are different reference regions, and columns are the deep grey matter ROIs. 

Fig. 2 Between group analysis. Critical values of Tukey’s range test, orange denotes statistically significant 
differences (below 0.05). LTLE and RTLE are left and right temporal lobe epilepsy groups. 

 
clearly seen in Figures 1 (top row, p-value of 0.038) and 2 (between RTLE and LTLE). 

Conclusions Due to its significant difference the CC is a bad choice of reference region, as it will 
increase the number of significant groupwise ROI differences introducing bias. The whole-brain and 
RelVar reference regions had little impact on the statistical results. Using the CSF reference region 
reduced significant between-group susceptibility differences (Figure 1). This suggests that some of the 
between-group variation could be due to bias, and/or because the estimate of the mean of the CSF is 
noisy, thereby increasing the (sample) variance of the test statistic and thus decreasing the effect size. 
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Introduction: Conventional magnitude-based blood oxygen level-dependent (BOLD) fMRI is a well-
established and widely used neuroimaging technique, while functional quantitative susceptibility 
mapping (fQSM) [1], [2] represents a novel approach that may provide more localized activations. 
In normal circumstances, in response to neuronal activation, BOLD fMRI and fQSM exhibit positive 
and negative signal changes, respectively, due to the decrease in paramagnetic deoxyhaemoglobin 
concentration on functional hyperaemia. However, in certain cases, a perplexing phenomenon has 
emerged, where the observed fQSM activations are contrary to the expected pattern, appearing as 
positive activations instead, negatively correlating with the stimulus [1]–[5] he occurrence of these 
'inverse' activations raises intriguing questions about their underlying mechanism and requires further 
investigation. 
Methods: 70 volumes of multi-echo 2D GRE EPI were acquired in a healthy 30-year-old male 
volunteer using a 3T Siemens-Prisma scanner and a 64-channel head coil, with the parameters and 
stimulus protocol in Figure 1. To maximize the BOLD signal, a standard visual stimulation paradigm 
with a conventional block design was used. Data processing steps included calculating brain masks at 
every volume using FSL BET [6] on the second echo magnitude images. For fMRI, the multi-echo 
magnitude images were combined using T2*-weighted echo summation [7]. For fQSM, susceptibility 
maps were calculated from the phase images at each timepoint: the total field map was calculated 
using a non-linear fit of the complex data [8] plus Laplacian unwrapping [9]; intra-slice background 
fields were removed with 2D+3D V-SHARP [10] followed by 3D-PDF [11] to remove through-slice 
fields [12]. Susceptibility maps were then computed using non-linear total variation regularisation 
(FANSI, α = 2x10-4) [13]. fQSM processing was performed on absolute susceptibility maps, to 
minimise the impact of opposite sign cancellation of neighbouring voxels on smoothing [14]. 
Functional Analysis: SPM12 [15] was used for fMRI and fQSM. Spatial pre-processing included rigid-
body realignment of the magnitude images to the first image in the time-series to correct for 
motion, with the resulting transformations applied to corresponding susceptibility maps and masks, 
and spatial smoothing with an 8 mm FWHM Gaussian kernel to improve SNR and increase statistical 
power [16]. A general-linear model (GLM) was reconstructed with a regressor for the visual stimuli. 
Statistically significant changes were detected by voxel-wise t-tests. fMRI and fQSM activation maps 
were generated using a threshold of p<0.001 without FWE correction or imposing a minimum cluster 
size restriction, allowing for the visualisation of individual supra-threshold voxels. 
Results & Discussion: In addition to expected susceptibility decreases on activation, the analysis 
showed unexpected increases in susceptibility (positive activations) in fQSM (Fig. 2). All fMRI 
activations were more extensive and higher amplitude than the corresponding fQSM activations.   
Previous studies suggest explanations for positive fQSM activations including QSM reconstruction 
artifacts such as incomplete dipole inversion [1, 2], particularly near high susceptibility sources like 
veins. The inverse fQSM activations observed here were not close to large veins.  
Conclusions: We observed ‘inverse’ activations in both BOLD fMRI and fQSM. This challenges the 
conventional paradigm of neuronal activation detection and highlights the need for further research 
into their underlying mechanisms.  
 

 
 



 

 

 
Fig. 1. Image acquisition parameters 
 

 
Fig. 2. Normal and ‘Inverse’ activations: normal activations consisting of positive fMRI (first row) and negative 

fQSM (second row) activated voxels, and ‘inverse’ activations consisting of negative fMRI (third row) and 
positive fQSM (forth row) activated voxels are shown in all three orientations, overlayed on the combined-

echo magnitude images from the first timepoint. 
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Introduction: Quantitative Susceptibility Mapping (QSM) uses phase information from the complex 
MRI signal to estimate the underlying magnetic susceptibility of the imaged tissue. Multi-echo 
gradient echo (ME-GRE) sequences are often used for QSM, typically with echoes acquired at a single 
gradient polarity, known as a monopolar acquisition. This requires ‘fly-back’ gradients between the 
echo readouts, which increase echo spacing and acquisition time. Acquisition efficiency can be 
improved using a bipolar acquisition, in which echo readouts are acquired with gradients of alternating 
polarity. However, the alternating readout direction can lead to phase discrepancies between the odd 
and even echoes, due to gradient delays and eddy currents. Failure to correct for these phase offsets 
may lead to errors during QSM processing. Here, we aimed to compare the performance of two phase 
offset correction methods. 
Methods: Five healthy volunteers (aged 17.1 ± 5.5 years) were imaged with a multi-parametric 
mapping (MPM) acquisition [1] and a conventional ME-GRE sequence. Each of the MPM sequences 
were acquired using bipolar readout gradients, whereas the ME-GRE used monopolar gradients. 
The T1-weighted FLASH sequence of the MPM acquisition had bipolar gradients, a 240x256x176 
matrix, 1 mm isotropic resolution, 24.5 ms TR, 2.34 ms TE1 and ∆TE, 8 echoes, 21° flip angle, and 465 
Hz/pixel bandwidth. 
MPM susceptibility maps were calculated from the T1-w sequence without any phase offset correction 
and then recalculated using two different correction methods. These were: Estimating the odd-even 
phase offset by linear fitting along the three spatial dimensions of a phase offset map obtained from 

the first three echoes [2]; The 
MCPC-3D-S phase offset correction 
method included in the ROMEO 
phase unwrapping package [3,4]. 
All QSM processing was performed 
using the same processing pipeline 
[5], other than the MCPC-3D-S 
offset correction, which used 
ROMEO unwrapping instead of 
SEGUE. Difference maps between 
the resulting QSMs were 
calculated. 
QSMs were also calculated from 
the monopolar ME-GRE sequence 
to provide a reference for the 
results obtained from the MPM 
sequence. ME-GRE sequence 
parameters: 156x192x144 matrix, 
1.15 mm isotropic resolution, 38 
ms TR, 3 ms TE1, 4 ms ∆TE, 7 echoes 

Fig. 1. QSMs calculated from the T1-w MPM sequence with and 
without the two phase offset corrections and corresponding 
difference maps. An axial slice is shown in a representative subject.  



 

 

15° flip angle, 360 
Hz/pixel 
bandwidth. These 
were processed 
using the same 
pipeline as the T1-
w MPM sequence. 
The ME-GRE QSM 
was coregistered 
to the MPM QSMs 
using FSL FLIRT 
[6]. Difference 
maps were then 
calculated 
between each of 
the T1-w MPM 
QSMs and the 
coregistered ME-
GRE QSM. Whole brain mean absolute differences (MAD) were also calculated to evaluate the 
similarity between QSMs calculated with different phase offset correction methods. 
Results: Example QSMs and absolute QSM difference maps are shown in Figure 1. Comparing the 
whole brain MAD for each correction method relative to the uncorrected MPM QSM, the linear 
correction had the smallest MAD of 1.11 ± 0.56 ppb. The ROMEO correction method gave a MAD of 
1.23 ± 0.52 ppb. The MAD values comparing the MPM QSMs to the coregistered ME-GRE QSM were: 
Uncorrected: 17.93 ± 2.58 ppb; Linear correction: 17.88 ± 2.59 ppb; ROMEO correction: 17.86 ± 2.57 
ppb. 
Discussion: The whole-brain MAD values obtained from comparing the corrected and uncorrected 
MPM QSMs show that the effect of the correction is very small, with the linear and ROMEO corrections 
having very similar results. 
Complete failures in the uncorrected QSMs, as observed in the literature [2], were not observed in 
this sample, but complete processing of the full cohort (13 healthy controls and 19 patients with sickle 
cell anaemia), including images from the other two (PD-w and MT-w) MPM sequences, could reveal 
cases where phase offset correction has a greater effect. 
Based on the figures and MAD values between each of the phase-offset corrected MPM QSMs and 
the ME-GRE QSM, it appears that differences between the two sequences are the dominant 
contribution. The shorter final echo time in the ME-GRE sequence likely leads to a susceptibility 
underestimation larger than the scale of any errors due to the bipolar acquisition. 
Conclusions: Applying phase offset corrections methods to this MPM sequence acquired using bipolar 
gradients did not have a substantial effect on QSM. This suggests that either of these phase offset 
corrections could be applied to QSM data acquired using this bipolar MPM sequence on this system. 
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Fig. 2. The coregistered QSM calculated from the ME-GRE sequence shown alongside 
the MPM QSMs from Figure 1 with corresponding absolute difference maps. 
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Introduction: Quantitative susceptibility mapping (QSM) has shown potential to measure disease-
related changes in tissue iron, myelin, calcifications and oxygenation [1]. Previous QSM studies have 
investigated its potential to detect intraprostatic calcifications to use as fiducial markers for 
radiotherapy [2] and post biopsy in prostate cancer (PCa) [3]. Blood’s susceptibility is directly 
proportional to its oxygenation, and low oxygenation (hypoxia) is thought to occur early in the 
evolution of PCa and is linked to an aggressive phenotype [4]. All this underpins our aim to investigate 
whether QSM has the potential to help detect and classify lesions in the prostate. 
Methods: 20 patients were recruited as part of the Histo-MRI clinical study [5], where 5 patients had 
lesions and underwent prostatectomy, 6 patients had malignant lesions on biopsy and underwent 
(radio/cryo) therapy and 11 patients who were screened for prostate cancer but were not diagnosed 
with PCa (control cohort). All subjects were given Buscopan prior to the scan to reduce rectal gas and 
bowel motion. 3D GRE images  were acquired on a 3T Philips Ingenia using an anterior 4x4 channel 
receive array and a 4x4 array in the table. Optimised scan parameters [6] included: FOV 420 x 320 x 
128 mm, 1 mm isotropic resolution, 5 in-phase echoes, TE1 4.6 ms, ΔTE 6.9 ms, and SENSE factor 3. 
An optimized QSM pipeline was used to generate susceptibility maps: Total field maps from a non-
linear fit of the complex data [7] underwent Laplacian unwrapping [8]. Whole prostate masks were 
contoured by two expert radiologists using MIM [9] and HOROS [10] software, and were used for 
background field removal using Variable-radius Sophisticated Harmonic Artifact Reduction for Phase 
data (VSHARP) with a maximum kernel width of 25 mm [11]. Susceptibility calculation was performed 
using iterative Tikhonov regularization [12] with the default regularization parameter α=0.05. One 
lesion per subject was contoured in the prostatectomy and therapy cohorts; and one healthy tissue 
contour was drawn per subject for the control cohort.  
Results and Discussion:  The mean lesion susceptibility values were significantly (t(9)=3.8, p=0.004) 
higher in the prostatectomy cohort (8.6 ± 4.8 ppb, mean ± SD) compared to the therapy cohort (0.30 
± 2.2 ppb) in this preliminary analysis. 
One explanation of the significantly different susceptibility values in the different lesion cohorts is that 
lesion volumes in the prostatectomy cohort were larger (3736 ± 3403 mm3) than the therapy cohort 
(2802 ± 2591 mm3). Additionally, the lesion contours in the prostatectomy cohort and therapy cohort 
were drawn by different radiologists. Therefore, inter-reader variability needs to be taken into 
account: the lesion contours in both cohorts will all be drawn a single expert radiologist. If a difference 
in the susceptibility values between the different cohorts persists, the underlying reason for it  will 
need further investigation. Co-registration of the MRI susceptibility maps with histological stains may 
enable further characterisation of the lesions and correlations with histopathological (Gleason) scores. 
Conclusions: The preliminary results from this limited number of patients and lesions suggest that 
QSM may have potential to differentiate between different types of lesions. Future work will involve 
one radiologist contouring all the lesions to remove any effects of inter-reader variability. Further co-
registration with histology may contribute to understanding any susceptibility differences observed 
between these different lesion types.  
Acknowledgements: This work is funded by Cancer Research UK-EPSRC Multidisciplinary project 
award (A24348). 



 

 

 
Fig. 1. Box plot of the distribution of lesion susceptibility values in the prostatectomy cohort, the therapy cohort 
and mean tissue susceptibility values in healthy control regions.  

Fig. 2. Selected contour masks (red) overlaid on susceptibility maps. a. Sagittal view of a lesion contour in a 
subject from the prostatectomy cohort. B. Coronal view of a lesion contour in a subject from the therapy cohort. 
C. Axial view of a healthy tissue contour in a subject from the control cohort. 
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Introduction: MR-Electric Properties Tomography (MR-EPT) provides a non-invasive technique to 
reconstruct tissue conductivity and permittivity from the distorted complex RF field (B1) based on the 
Helmholtz equation [1]. Assuming local homogeneity of electrical properties, phase-based MR-EPT 
can solve the truncated Helmholtz equation for tissue conductivity by directly calculating the Laplacian 
of the transceiver phase (φ0), or, alternatively, by integrating its first derivatives [2]. To overcome the 
noise-amplifying nature of the Laplacian operation, parabolic fitting of φ0 has proved to be more 
robust than the finite difference method to reconstruct conductivity in the presence of noise [3]. 
Matrix inversion is conventionally used to perform the least squares fitting to generate polynomial 
coefficients within a kernel, from which the voxel-wise conductivity is calculated. Advanced 
reconstruction methods further incorporate anatomical information, by weighting the fitting with 
voxel-wise signal magnitudes and refining the kernel based on local tissue segmentations [4]. 
However, these kernel modifications often result in underdetermined linear systems for voxels within 
highly noisy regions and voxels near tissue boundaries, where the matrix can become ill-conditioned 
or singular. In computation, the inversion of underdetermined matrices permits many solutions, and 
unreliable solutions can be generated for singular matrices when the residuals are small. In the least 
squares methods, a particular solution can be found for underdetermined linear systems, which 
minimises both the Euclidean norm and the fit residuals [5]. Therefore, we investigated whether such 
“minimum norm” solutions can provide more robust conductivity estimates, particularly for voxels 
where the matrix inversion is ill-conditioned. 
Methods: Numerical brain phantom: Noise-free complex B1 was simulated using finite-difference 
time-domain electromagnetic simulation (XFdtd, USA) of a male human head model at 128 MHz and 
1 x 1 x 1 mm3 resolution [6, 7]. Gaussian noise was added to the real and imaginary signals to vary the 
phantom SNR. In vivo brain MRI: A multi-echo 3D GRE sequence was employed to acquire brain MRI 
in a healthy volunteer at 3T (Siemens, Germany) with TR = 30 ms, TEs = 4.92, 9.84, 14.76, 19.68, and 
24.60 ms, FOV = 256x192x176 mm, with 7/8 partial Fourier and 1 x 1 x 1 mm3 resolution. φ0 was 
calculated by extrapolating the phase to TE = 0 after unwrapping with SEGUE [8]. Quantitative 
conductivity mapping (QCM): We implemented phase-based QCM methods that employ magnitude-
weighted Gaussian apodization (Mag) and tissue segmentation kernel modifications (Seg), 
respectively, and in combination (Mag+Seg) [4]. Segmentations were generated from the magnitude 
image (TE = 14.76 ms) using SPM [9]. Phantom and in-vivo conductivity maps were reconstructed from 
φ0 based on Laplacian [3] and surface-integral formulations [2], with 2nd-order polynomial least 
squares fitting. We computed and compared the conductivities solved by least squares fitting using 
left-division operation for matrix inversion, and using QR decomposition for finding the least squares 
minimum norm solution [10]. All image processing was performed in MATLAB (R2022b, MathWorks). 
Results and Discussion: In both phantom and in-vivo QCM calculated with matrix inversion, we 
observed unreliable (NaNs and Infs) and unrealistic reconstructed conductivity values near tissue 
boundaries and noisy brain regions. In the numerical phantom, the number of ill-conditioned voxels 
erroneously reconstructed by matrix inversion (Fig. 1A, indicated by white arrows) increased with 
decreasing SNR and kernel size, and was minimised using minimum norm solution (Fig. 1B, C). 
Although the number of voxels inaccurately reconstructed by matrix inversion could be reduced by 
selecting a large kernel size for the polynomial fitting, minimum norm solution yielded conductivity 
maps (Fig. 2A) with a distribution of smaller regional conductivity variations (i.e. few voxels with 
inaccurate or unphysical conductivities) than matrix inversion (Fig. 2C). In regions where the linear 
system is well-conditioned, the difference between the conductivity calculated using the minimum 
norm solution and matrix inversion is negligible (Fig. 2B).  



 

 

 
Fig. 1. Conductivity maps of the numerical phantom reconstructed by Mag+Seg integral QCM with a small 
kernel (11*11*11), using matrix inversion (A) and minimum norm solution (B), and their absolute errors of 

reconstructed conductivity (C). The effect of erroneously reconstructed voxels is indicated by arrows. 

 
Fig. 2. In vivo conductivity reconstructed by Mag+Seg integral QCM with a large kernel (23*23*23) using 

minimum norm solution (A). Conductivity difference map (B) between minimum norm solution and matrix 
inversion, green regions indicate the absence of a numerical difference. CSF conductivity distributions using 

matrix inversion and minimum norm solution (C).  

Conclusions: In this work, we demonstrated that the minimum norm solution for polynomial fitting 
improved conductivity estimation when the linear system was underdetermined, compared with least 
squares fitting using matrix inversion. In well-conditioned regions, the minimum norm solution 
preserved the stability of the resulting conductivity values. Therefore, minimum norm least squares 
fitting is advantageous for phase-based reconstruction of conductivity maps from images with low 
SNR. 
Acknowledgements: The authors are supported by European Research Council Consolidator Grant 
(DiSCo MRI SFN 770939). 
 
References 
[1] U. Katscher, and C. A.T. van den Berg, NMR Biomed. 30(8), e3729 (2017).  
[2] T. Voigt, U. Katscher, and O. Doessel, MRM. 66(2), 456-466 (2011).  
[3] S. K. Lee, S. Bulumulla, and I. Hancu, IEEE Trans. Med. Imaging 34(11), 2220-2232 (2015). 
[4] A. Karsa, and K. Shmueli, Proc. Ann. Meeting ESMRMB (2020). 
[5] B. Mario, and B. Patrizia, Introduction to Inverse Problems in Imaging (1st ed.), CRC Press, Boca Raton, 1998.  
[6] A. Karsa, P. Fuchs, and K. Shmueli, Proc. Ann. Meeting ISMRM (2021). 
[7] R. Leijsen, et al. J. Imaging 5(2), 25 (2019). 
[8] A. Karsa, and K. Shmueli. IEEE Trans. Med. Imaging 38(6), 1347-1357 (2018). 
[9] J. Ashburner, et al. SPM12 Manual, Wellcome Trust Centre for Neuroimaging, London, 2021. 
[10] G. Strang, Linear Algebra and Learning from Data, Wellesley-Cambridge Press, Wellesley, 2019. 

(A) (B) (C) 

(A) (B) (C) 



 

 

P-12 
Modelling Magnetization Transfer in Segmented ZTE Pulse Sequences  

Oliver Pinnaa, Gareth Barkera, Tobias C Wooda 
a Department of Neuroimaging, King’s College London, IoPPN, DeCrespigny Park, Camberwell, SE5 8AF 

Introduction: Zero Echo-Time (ZTE) imaging is an attractive alternative to conventional scans as it is 
comparatively silent, fast, and captures short-lived signals [1]. While the native contrast of ZTE is T1-
weighted, preparation pulses can be used to achieve a wide range of contrasts. Here we consider RF-
preparation pulses used to increase sensitivity to myelin through semisolid Magnetization Transfer 
(MT). Deriving algebraic signal equations for such a segmented MT-prepared sequence is tedious and 
inflexible, and traditional Bloch simulations are cumbersome, as many repetitions are needed before 
reaching a steady state. In this study, we build upon previous work using homogenized Bloch 
Equations to provide a fast and flexible sequence simulation method [2] and compare the results to 
in-vivo measurements.  
Theory 
As the ZTE readout can be considered a fully spoiled Gradient Echo sequence [1], we neglect the 
transverse magnetization and consider only the longitudinal magnetization in a system with free 
(water) and semisolid (myelin) pools, with relative fractions 𝑀𝑀0

𝑓𝑓 + 𝑀𝑀0
𝑠𝑠 = 1. The evolution of the 

magnetization is governed by the differential equations [2, 3, 4, 5, 6]: 
𝑑𝑑𝑴𝑴
𝑑𝑑𝑡𝑡

= (𝛀𝛀 + 𝚲𝚲)𝑴𝑴+ 𝑪𝑪 = 𝑨𝑨𝑴𝑴+ 𝑪𝑪   

or  𝑑𝑑𝑴𝑴
�

𝑑𝑑𝑡𝑡 = 𝑨𝑨�𝑴𝑴�  where 𝑴𝑴� = �𝑴𝑴1 �, 𝑨𝑨
� = �𝑨𝑨 𝑪𝑪

𝟎𝟎
�  

and 𝑴𝑴 = �𝑀𝑀𝑧𝑧
𝑓𝑓

𝑀𝑀𝑧𝑧
𝑠𝑠� , 𝛀𝛀𝑹𝑹𝑹𝑹 = �sin𝛼𝛼𝑅𝑅𝑅𝑅 0

0 𝑒𝑒𝑒𝑒𝑝𝑝(−𝑊𝑊𝜏𝜏𝑅𝑅𝑅𝑅)�, 𝛀𝛀𝑴𝑴𝑴𝑴 = �1 0
0 𝑒𝑒𝑒𝑒𝑝𝑝(−𝑊𝑊𝜏𝜏𝑀𝑀𝑀𝑀)�, 𝚲𝚲 =

�−𝑅𝑅1
𝑓𝑓 − 𝑘𝑘𝑓𝑓 𝑘𝑘𝑠𝑠
𝑘𝑘𝑓𝑓 −𝑅𝑅1𝑠𝑠 − 𝑘𝑘𝑠𝑠

� and 𝑪𝑪 = �𝑅𝑅1
𝑓𝑓𝑀𝑀0

𝑓𝑓

𝑅𝑅1𝑠𝑠𝑀𝑀0
𝑠𝑠 �. Due to kinetic equilibrium, 𝑘𝑘𝑓𝑓𝑀𝑀0

𝑓𝑓  =  𝑘𝑘𝑠𝑠𝑀𝑀0
𝑠𝑠  =  𝑘𝑘 

Over a period Δ𝑡𝑡, where  𝑨𝑨� is constant, the evolution of 𝑴𝑴�  is given by 𝑴𝑴� (𝑡𝑡 + Δ𝑡𝑡) =

exp (𝑨𝑨�(𝑡𝑡)Δ𝑡𝑡)𝑴𝑴� (𝑡𝑡). The steady state of a sequence is then given by: 

   𝐌𝐌� (𝑡𝑡 + 𝑇𝑇𝑅𝑅) = ∏  𝑁𝑁−1
𝑛𝑛=0 exp (𝐀𝐀�(𝑡𝑡 + 𝑛𝑛Δ𝑡𝑡)Δ𝑡𝑡)𝐌𝐌� (𝑡𝑡) =  𝑿𝑿�(𝑡𝑡)𝐌𝐌� (𝑡𝑡)  

where 𝐌𝐌� (𝑡𝑡) is the eigenvector of 𝑿𝑿�(𝑡𝑡) with unit eigenvalue. 
Methods: A healthy volunteer was scanned at 3T (GE Premier) with a 48-channel head coil. The 
sequence parameters used were 𝑇𝑇𝑅𝑅 = 2𝑚𝑚𝑚𝑚, 𝜏𝜏𝑀𝑀𝑀𝑀/𝜏𝜏𝑅𝑅𝑅𝑅 =  20𝑚𝑚𝑚𝑚/16𝜇𝜇𝑚𝑚, 𝛼𝛼𝑀𝑀𝑀𝑀/𝛼𝛼𝑅𝑅𝑅𝑅 =  1800°/1° 
(Gaussian MT pulse at 5kHz), spokes per segment = 768. The scan time was approximately 3 minutes. 
Each segment was divided into 16 bins containing 48 spokes and reconstructed with Total Variation 
regularization along the time dimension [7]. An ROI was drawn in posterior white matter over three 
slices, and the averaged signal fitted to the above model using non-linear least squares [8].  
Results: Figure 1 (left) shows the first and last reconstructed frames. The signal intensity in white 
matter increases by approximately 5% between these frames. Figure 1 (right) shows the time course 
in the ROI and the resulting fit from the model. The fitted parameters were: 𝑘𝑘 = 0.90 ± 0.01 s-1, 𝑅𝑅1

𝑓𝑓 =
0.840 ± 0.071 s-1, 𝑅𝑅1𝑠𝑠 = 9.97 ± 0.99 s-1 and 𝑀𝑀0

𝑠𝑠  =  0.031 ± 0.001. 



 

 

 

 
Figure 5 (Left) First and last of 16 frames reconstructed from a single ZTE dataset showing an increase of WM signal 

intensity. The red circle indicates the ROI. (Right) Normalized white matter ROI signal simulated and measured from the 
ZTE frames (error bar = ±1std). 

Discussion: The Homogenized Bloch Equations framework allowed straightforward modelling of the ZTE 
sequence with different parameters and was accurate enough to produce a plausible fit to the data. Importantly, 
we were able to include the saturation effect of the short hard RF pulses used for the ZTE readout, which can 
affect the bound pool. The tissue parameters found from the fit are the correct order of magnitude but show 
some discrepancies to literature values. This can be at least partially attributed by the lack of a B1+ map in this 
initial experiment, which will affect both the effective read-out flip-angle and the saturation of the semi-solid 
pool by the Gaussian pulse. Future work will investigate optimal sequence settings for extracting accurate 
quantitative MT parameters. 
Conclusions: Homogenized Bloch Equations are an efficient and flexible way to simulate complicated segmented 
pulse sequences such as MT-prepared ZTE. 
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Introduction: Clinical MR physicists are integral to the successful translation of quantitative MR (qMR) 
biomarkers by focusing on activities such as installing sequences, optimising parameters and establishing 
consistent, robust and efficient protocols [1]. To effectively manage this workflow, it is crucial that the protocols 
and sequence parameters adhere to the FAIR principles: Findable, Accessible, Interoperable, and Reusable [2]. 
Currently, the process of manually retrieving this information via a scanner console is inefficient and time-
consuming, which is a challenge within a busy clinical setting, and complicated by the fact that protocols are 
constantly evolving. An absence of version control for scanner protocols and the failure to adhere to the FAIR 
principle for data management, contributes to these issues. To overcome these challenges, we propose 
implementing a version control system and utilizing Power BI to visualise sequence parameters to enable 
research protocol harmonisation. In this abstract, we present a workflow that addresses these issues within a 
clinical research environment. 
Methods: Neuro research protocols from all the MRI scanners in the Trust were exported as xml files. The files 
were retrieved from a local workstation and variations across versions were monitored using Git. Each xml file 
was parsed to generate a spreadsheet in comma-separated values (CSV) format, using R (version 4.2.2) along 
with xml2 (version 1.3.3) and tidyverse (version 2.0.0) packages. All the files and codes were managed using 
Bitbucket repository. The spreadsheets were uploaded back to the cloud and imported into Power BI, where 
data models were established to query differences between the CSV files, upon which interactive visuals were 
created within Power BI reports for user interaction. For an illustrative summary, see Fig. 1. 

 
Fig. 1. Illustrative summary of workflow and a Power BI report example. 

 
Results: In total, there were 16 protocols, 226 sequences, and more than 37,000 parameters, and there were 
166 parameters per sequence on average (max: 414, min: 88). Protocols were organised into three top-level 
folder (RESEARCH, USER SMR1, PHYSICS), four second-level folder, and 15 third-level subfolders, with some 
having fourth- and fifth-level subfolders – a complicated file structure to enable comparisons. The Power BI 
report facilitates direct and semi-automated comparison of protocols and specific sequence parameters, across 
multiple projects and scanners. It also supports tracking the evolution of a single protocol with multiple versions, 
thus aiding protocol optimization. This results in efficiencies relating to protocol set-up, removes the need to 
use scanner console to compare protocols, and ensures research data acquisition consistency to enable data 
sharing. 
Discussion: The Power BI report enables thorough review of all imaging research projects by facilitating the 
comparisons of multiple protocols and sequence parameters. Notably, the report visualises the changes made 
in optimising sequence parameters, which assists our understanding of how these parameters influence the 



 

 

quantitative values derived from imaging data, and such understanding is a crucial step in translation of qMR 
biomarkers. The outputs from this workflow also allow comparison of our protocols with community consensus 
initiatives that focus on different organs and/or disease areas, such as the UKRIN-MAPS multi-parametric renal 
MRI protocol [1]. We can use the Power BI report to monitor and ensure, going forwards, that research protocols 
are consistent across projects to allow pooling of data (if appropriate). Lastly, the workflow holds great promise 
for clinical protocol management in the future. The Power BI report is securely managed within a clinical 
environment, as access permissions are only granted to relevant personnel. 
Conclusions: By integrating FAIR principles, version control and data visualisation, our workflow has significantly 
improved protocol management, enabled more robust and efficient sequence parameter optimisation and 
improved data acquisition quality and consistency. The outputs present clear benefits for planning and 
delivering research in a busy clinical environment, by  enabling efficient utilisation of time at the scanner 
console, thus maximising the use of valuable clinical resources for patient care. 
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Foundation Trust, for their support in granting a pro-license for Power BI and providing us with guidance on 
information governance. 
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Introduction: Gliomas are the most common type of malignant brain tumours. Tumour grading and genotyping 
is essential for guiding treatment and to predict prognosis. Accurate glioma classification relies on tissue 
diagnosis, which has associated surgical risks, takes time and is not feasible in all patients. XGBoost is one of 
many machine learning algorithms currently available to perform classification tasks from MR images, 
potentially enabeling non-invasive glioma characterisation. Choosing the optimal MR modality and best region 
of interest for feature extraction to maximize model performance remains an empirical question. A recently 
published dataset [1] contains glioma segmentations for structural and advanced MR acquisitions (Diffusion, 
SWI, ASL), presenting an opportunity for a systematic search of ideal model inputs. Our aim was to assess which 
tumour regions and which imaging modalities provided the best accuracy for untreated glioma characterisation. 
Methods: The cleaned dataset comprised of 493 glioma patients, of which 56 (11%) were diagnosed with WHO 
grade 2, 43 (9%) with WHO grade 3, and 394 (80%) with WHO grade 4. The IDH mutation was present in 103 
patients (21%). The dataset was divided into 80% for training, and 10% for each validation and testing, while 
stratifying the groups along the dimensions 1) IDH status, and 2) WHO Grade. A pyRadiomics based pipeline was 
set up on a high-performance computing cluster to extract 18 first-order features from 10 structural and 
advanced MR acquisitions (pre-contrast T1, T2, post-contrast T1, FLAIR, SWI, ASL, DWI, ADC, DTI fractional 
anisotropy and mean diffusivity). XGBoost classifiers were trained on all extracted first-order features, along 
with basic clinical information (sex and age) to predict WHO grade (grade 2, 3 or 4) and isocitrate dehydrogenase 
(IDH) mutation status (wildtype or mutant) with all possible combinations of the 10 modalities as input. First-
order features have been separately extracted from the necrotic core, the enhancing region, the non-enhancing 
region, the whole tumour, and the whole brain, whereby the whole tumour is defined as necrotic core + 
enhancing region + non-enhancing region. 
Results: The XGBoost classifier performed best when features were extracted from the whole tumour (fig. 1, 
panel a). The modalities that were used for the best performing models are post-contrast T1 (used in 10 / top 
10 models), DWI (used in 8 / top 10 models), DTI fractional anisotropy, FLAIR, SWI, and ADC (all used in 6 / top 
10 models). The best performing model was trained on first-order features from DTI FA, FLAIR, DWI, post-
contrast T1 and DTI MD, and achieved a balanced accuracy of 0.8 for WHO grade prediction and of 0.93 for IDH 
status prediction (Fig. 1, panel b). The area under the receiver operating characteristic curve (AUC ROC) is 0.98 
for differentiating WHO grade 2 gliomas against the other two grades, 0.90 to predict grade 3 tumours and 0.99 
for grade 4 gliomas (Fig. 2, panel a). For the classification of the IDH mutation status the AUC ROC is 0.96 (Fig. 2, 
panel b).   
 
 
 
 



 

 

Fig. 6. Performance of XGBoost classifier measured in balanced accuracy depends heavily on the brain region 
chosen for feature extraction (see bar plot) as well as on MR acquisition input (see table). a) Comparison of 
average model performance across all models for different regions of interest during feature extraction. Perfect 
balanced accuracy for two targets (WHO and IDH) would attain an average of sum = 2. b) Top 10 best 
performing models alongside their MR acquisition input. Features extracted from whole tumour. 
 

Fig. 7. Receiver operating characteristic curve for best performing model. a)  ROC for WHO grade prediction. 
As there are three classes, the evaluation requires three “1 vs. all” ROC curves. Class 0 corresponds to WHO 
grade 2, class 1 to WHO grade 3, and class 2 to WHO grade 4. b) ROC for IDH mutation status prediction. 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
  
   
 
 
 
 
 
 
 
 
 
 
 
 
Discussion: Our study demonstrates how the XGBoost algorithm can effectively predict the WHO grade and IDH 
mutation status in gliomas using first-order features extracted from MR images. The most informative data 
appeared to come from post-contrast T1 and diffusion imaging, with features extracted from the whole tumour 
yielding the highest accuracy. The significant number of models that were trained, however, comes with the risk 
of overfitting the model on the validation set. Also, while our validation scores are promising, further research 
should investigate how these models perform on completely unseen data. Additionally, future studies might 
want to explore how accuracy can be improved by the incorporation of more clinical and genetic data into the 
model. 
Conclusions: Our study suggests that XGBoost can provide meaningful insights for glioma characterisation, 
especially when trained on post-contrast T1 and diffusion imaging from the whole tumour. However, future 
work is required to assess the model’s performance on unseen data.  
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Introduction: The apparent diffusion coefficient (ADC) is a potential quantitative biomarker for assessing 
response to radiotherapy and for aiding online treatment planning. Diffusion-weighted (DW) imaging acquired 
with an echo-planar imaging (EPI) readout suffers from geometric distortion related to field inhomogeneity and 
eddy currents, limiting its utility for radiotherapy treatment planning. The purpose of this work is to investigate 
the influence of the EPI phase encode direction and diffusion encoding directions on the geometric distortion 
and ADC accuracy (bias).  
 
Methods: We scanned a diffusion phantom [1] (Qalibre MD Inc., Boulder, CO) filled with ice-water with an 
ExamCard based on the DW-EPI prostate consensus protocol [2] on a 1.5T Unity MR-Linac (Elekta AB, 
Stockholm). ADC maps were calculated online using b-values 0, 150, 500 s/mm2.  
ROIs were drawn manually, and mean ADCs were calculated using MATLAB R2022a (The MathWorks, Natick, 
MA) and compared using unpaired t-tests. Geometric distortion was assessed on b-500 images by having five 
repeat measurements of distances between phantom markers A, B and C as shown in figure 1D. ADC biases for 
the vials with unique ADCs - 1,4,6,8,10 was evaluated. A p-value of 0.05 was considered statistically significant.  
The following comparisons were made: 

• Phase Encoding: – Anterior Posterior (PE-AP) vs Right Left (PE-RL) with Overplus trace diffusion weighted 
images (t-DWI). The following experiments were conducted with PE-AP. Gradient Overplus applies 
gradients simultaneously along different physical axes to minimise TE for optimal SNR. 

• Overplus t-DWI vs no-overplus t-DWI  
• Overplus t-DWI vs individual overplus orientations  
• No Overplus t-DWI vs diffusion encoded along X, Y and Z axes. 

For the Overplus scheme, ADC maps had to be calculated manually from the individual diffusion orientation 
images. The generated ADC maps were compared against the online calculated trace-weighted ADCs to measure 
any difference/bias in the measurement methods using a paired t-test.  
The [pre, post] phantom temperatures (°C) for the measurements were read after letting the thermometer 
adjust for 1 minute in the ice bath. 
 
Results: The distortion with the PE-AP trace weighted image with gradient overplus was lower than with PE-LR 
as indicated by the average marker distances (reference – 12.04, 6.0, 10.45 cm) (12.0, 5.9, 10.41 cm) compared 
to (11.94/5.82/10.25 cm), where bold font represents statistical significance. The overplus t-DWI had 
significantly lower distortion along AC (10.41 cm) vs 10.36 cm for non-overplus t-DWI. 
Among the scans with overplus, the gradient orientation of 0.66/0.33/-0.66 (X/Y/Z) – OvpDir2, had the lowest 
geometric distortion (figure 1A) measured by the relative errors to the reference values of the distances for the 
three markers. When no overplus was used, the lowest distortion was seen when only the Z gradient was used 
(figure 1B). Comparing the best gradient orientations from the overplus and non-overplus schemes, there was 
no significant difference between the BC and the AC distances. However, encoding only along Z, the AB distances 
were not significantly different from the reference while with overplus 0.66/0.33/-0.66 (X/Y/Z), this distance 
was significantly higher than the reference (figure 1C).  
With the Overplus scheme, the ADC bias is lower with the OvpDir2 - 0.66/0.33/-0.66 (X/Y/Z) gradient orientation 
(figure 2A). This is in terms of the overall ADC deviation from the reference values of each vial. Similarly, without 
overplus, single diffusion encoding along the Z axis has the least ADC bias (figure 2B). 
The measured vs manually calculated ADC for the overplus trace weighted images were not significantly 
different (p = 0.06). 
 



 

 

 
Fig. 1. Geometric distortion 
measures from the various 
protocol configurations: 
Geometric distortion (cm)for the 
overplus and no-overplus 
schemes measured as AB, BC 
and AC distances 
 
 

 
 
 
 

Discussion: For use of DW MRI 
for radiotherapy treatment 
adaptation in MR-guided 
radiotherapy,  

not only accurate ADC measurements, but also geometric accuracy is required. The geometric distortion 
was reduced with single diffusion encoding both with and without the overplus schemes compared to the 
respective trace weighted images, which is in line with the results of Kooreman et al. [2]. 

 

 

Fig. 2. ADC bias (%) from the various protocol configurations 

 
Similarly, ADC biases were lower with the same diffusion encoding orientations in which the GDs were lowest.  
 
Conclusion: In anatomies where isotropic diffusion could be assumed, scanning with diffusion-encoding only 
along the Z gradient axis could yield more accurate ADCs with lower geometric distortion at the cost of reduced 
SNR due to increased echo and diffusion times at the same b-value. 
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Introduction: The hippocampus, an anatomically complex region within the medial temporal lobe, plays a crucial 
role in cognitive, affective, and behavioral regulation. However, assessment of the hippocampus and its 
subfields using non-invasive techniques such as MRI is difficult due to its size and complex shape. Image artifacts 
and limited spatial resolution lead to significant partial volume effects, impacting accurate characterization. 
Additionally, geometric distortions in diffusion MRI (dMRI) hinder precise co-registration with structural MRI, 
affecting the extraction of subfield-specific diffusion indices. While high-resolution acquisition protocols have 
been proposed [1], time constraints often restrict brain coverage and b-value. To overcome these challenges, 
our study took a different approach to achieve high-resolution dMRI. We employed Image Quality Transfer (IQT) 
[2], a computational technique that utilizes machine learning to learn the mapping from lower to higher quality 
data and enhance the spatial resolution of dMRI. The aim of the study was to investigate whether this approach 
followed by automated hippocampal subfields segmentation can produce a reliable segmentation, matching 
diffusion parametric maps. 
 
Methods: For this proof-of-principle study, we selected 15 datasets from the WU-Minn HCP Data section, Q3 
release [3] of the Human Connectome Project (https://www.humanconnectome.org). The 3 shell-diffusion 
weighted images included 18 b=0, and 270 diffusion weighted images split into 3 sets of 90 directions, with b-
values of 1000, 2000, and 3000 s mm-2 respectively. The original resolution was 1.25 mm isotropic [4]. To 
increase the resolution of the raw dMRI, we fit the mean apparent propagator (MAP) MRI model [5] to the 
original data, and then used IQT to enhance the resolution of MAP coefficient maps to 0.625 mm isotropic. 
Those coefficient maps were then used to produce synthetic diffusion weighted images. Directionally averaged 
images were then obtained for b=1000 s mm-2.  The corresponding T1-weighted scan – which is used as standard 
for automatic subfield segmentation -  was also downloaded (resolution= 0.7 mm isotropic) and co-registered 
to the mean b=1000 images. The HippUnfold algorithm [6] was applied to either image modality to segment the 
hippocampus. HippUnfold segments the following parts: subiculum, 4 portions of the cornus ammonis (CA1, 
CA2, CA3, CA4), stratum radiatum lacunosum-moleculare (SRLM), and dentate gyrus. T1-weighted scans were 
segmented using the default settings for this modality. The diffusion-weighted data were segmented 3 times 
using different nnU-Net models, namely the ‘T2-weighted’, ‘Hippb500’, and ‘NeonateT1w’ models. The 
difference between these models is primarily in the training data used. 
The results were first visually assessed and rated. Next, we used the Dice index to establish the degree of overlap 
between the T1-segmentation and the 3 dMRI segmentations for the whole hippocampus. The model that 
maximised the overlap was chosen on a participant-basis and further analyses were performed on the output 
of that model. Next, we compared the whole hippocampus and subfield volumes between T1-weighted and the 
best dMRI segmentation. The metrics used were: the mixed-2-way average measurement intra-class correlation 
coefficient (ICC), the coefficient of variation (CV), and the Pearson’s correlation coefficient. Bland-Altman plots 
were also used to investigate potential biases. 
Results: Upon visual inspection, it was observed that using T1-weighted anatomical images yielded satisfactory 
segmentation results, although there were instances of slight overestimation in the volume of the subiculum. 
The segmentation results for the b=1000 dMRI were variable, depending on participant and model. Overall, the 
‘NeonateT1w’ model (chosen for 9/15 participants) and ‘Hippb500’ model (chosen for 6/15 participants) 
outperformed the ‘T2-weighted’ model. The average Dice index was 0.88 for the left hippocampus and 0.89 for 
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the right hippocampus. The intra-class correlation coefficient (ICC) for the whole hippocampal volume was 0.95 
and 0.85 for the left and right hemispheres, respectively, with coefficient of variation (CV) values of 5.6% and 
3.5%. Bland-Altman plots indicated that the dMRI tended to slightly overestimate the whole hippocampal 
volume (Fig 1). When comparing the volumes of each subfield, the agreement between modalities was excellent 
for CA4 (ICC>0.9), very good for the subiculum, dentate gyrus, and SRLM (ICC>0.8), while the lowest ICC was 
found for CA2 (ICC=0.11). Figure 1 displays a randomly selected segmented left hippocampus using both 
modalities, along with the Bland-Altman plot for the whole hippocampus. 

 
Fig. 1. Segmentation comparison. Subfield segmentation of T1-weighted images (left) and dMRI (centre). Bland-Altman 

plot for the whole hippocampal volume (right) 
 
Discussion: Our study demonstrates the feasibility of enhancing dMRI resolution through machine learning 
techniques to achieve accurate segmentation of the hippocampus using HippUnfold. It is important to carefully 
evaluate and select the most suitable model when applying HippUnfold to dMRI data. Excellent agreement 
between T1-weighted and dMRI segmentation can be achieved for the entire hippocampus and the larger 
subfields. Currently, we are further investigating the implications of these two segmentations on quantifying 
subfield-specific diffusion indices. Additionally, we are expanding our analysis to include data acquired from 
patients with multiple sclerosis on a clinical scanner, exploring the potential clinical applications. 
Conclusions: Our preliminary results on the feasibility of segmenting hippocampal subfields from super-resolved 
dMRI are encouraging but further analyses of quantitative data are needed. 
References 
[1] Su L, Hayes L, Soteriades S, Williams G, Brain SAE, Firbank MJ, Longoni G, Arnold RJ, Rowe JB, O'Brien JT  Journal of 
Alzheimer's disease, 61, 415-424 (2018).  
[2] Alexander DC, Zikic D, Ghosh A, Tanno R, Wottschel V, Zhang J, Kaden E, Dyrby TB, Sotiropoulos SN, Zhang H, Criminisi 
A, NeuroImage. 152, 283-298 (2017). 
[3] Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K; WU-Minn HCP Consortium, Neuroimage. 80, 62-
79 (2013).  
[4] Sotiropoulos SN, Moeller S, Jbabdi S, Xu J, Andersson JL, Auerbach EJ, Yacoub E, Feinberg D, Setsompop K, Wald LL, 
Behrens TE, Ugurbil K, Lenglet C, Magnetic resonance in medicine. 70, 1682-9 (2013).  
[5] Özarslan E, Koay CG, Shepherd TM, Komlosh ME, İrfanoğlu MO, Pierpaoli C, Basser PJ, NeuroImage. 78, 16-32 (2013).  
[6] DeKraker J, Haast RA, Yousif MD, Karat B, Lau JC, Köhler S, Khan AR, eLife. 11, e77945 (2022). 
 
  



 

 

P-17 

Optimisation of T1𝜌𝜌 imaging for detecting cardiac fibrosis 
 
Liene Balodea, Dana Dawsona, James Ross a 

 
aUniversity of Aberdeen, Aberdeen, UK  
 
 
Introduction: In addition to conventional contrast-obtaining methods that use the spin-lattice (T1) and spin-spin 
(T2) relaxation mechanisms, there is another contrast-obtaining method that uses spin-lattice relaxation in the 
rotating frame (T1𝜌𝜌). T1𝜌𝜌 contrast can be obtained by performing imaging following the application of a spin-
lock (SL) pulse. Because of its sensitivity to low-frequency motional processes (Hz-kHz), T1𝜌𝜌 can be used to 
investigate the macromolecular composition and proton exchange within the tissue [1]. Hence, T1𝜌𝜌 MRI has the 
potential to detect cardiac fibrosis that is the result of an increase of protein deposition in the myocardial 
extracellular matrix. Cardiac T1𝜌𝜌 imaging is technically difficult and accurate T1𝜌𝜌 quantification remains 
challenging in routine clinical practice [2]. Therefore, in this work we have aimed to optimise our T1𝜌𝜌 imaging 
protocol for detecting cardiac fibrosis at 3T by varying the pulse sequence parameters. 
Methods: After informed consent, healthy volunteers were scanned using a 3.0 T MRI scanner (Achieva 
dStream, Philips, Amsterdam, Netherlands). The imaging sequence starts with a SL pulse (90x—SLy—180y—SL -

y—90-x) which is followed by a breath-held single-shot balanced steady-state free precession (bSSFP) image 
acquisition to acquire images of basal, mid-cavity and apical segments of the left ventricle. SL pulse durations 
used were linearly spaced from 0 ms to SLmax. To optimise our protocol, we varied the following sequence 
parameters:  SLmax (20, 30, 40 ms), the number of SL pulses used (4 or 6) and the flip angle (FA) of the bSSFP 
sequence (between 100 and 900). The acquired T1𝜌𝜌 maps were analysed using the Philips IntelliSpace Portal 
software. 
Results: It was found that the measured T1𝜌𝜌 did not change significantly when FA was altered from 100‐900 
(Figure 1), however a significant improvement in image signal-to-noise ratio (SNR) was observed.  There was no 
significant difference in the measured T1𝜌𝜌 relaxation time of the myocardium when acquisitions used 4 and 6 
SL pulses. The acquisitions with different maximum SL pulse durations showed that the measured T1𝜌𝜌 relaxation 
times depends on the maximum length of the SL pulse used. 

 
Fig. 1. Quantitative T1𝜌𝜌 maps acquired from a basal slice. The flip FA used for acquired image and corresponding T1𝜌𝜌 
relaxation time: a) 100 and 43 ms, b) 200 and 45 ms, c) 300

 and 42 ms, d) 900 and 44 ms. 
 
Discussion: Although the SNR increased for the T1𝜌𝜌 images with increasing FA, the measured T1𝜌𝜌 relaxation 
time from the T1𝜌𝜌 maps did not change significantly. It was observed that T1𝜌𝜌 map quality is sufficient for the 
FA ranging from 200-300. Increasing the number of SL pulses from 4 to 6 was expected to reduce T1𝜌𝜌 
quantification error as more data points were acquired for the exponential decay. However, there was no 
significant difference in the T1𝜌𝜌 rho relaxation time measured. Using 20 and 30 ms instead of 40 ms for the 
maximum duration of the SL pulse resulted in reduced measurement of T1𝜌𝜌 which we attribute to insufficient 
sampling of the relaxation process. 
Conclusions: To reduce maximum breath hold durations, 4 SL pulses could be used, which would be a more 
suitable option for patients with cardiovascular disease who are unable to perform long breath holds. The 
maximum SL pulse duration should be at least 40 ms SL pulse should be used to ensure sufficient sampling of 
the myocardium T1𝜌𝜌 relaxation. The optimum FA for the bSSFP acquisition sequence should range from 200-300 
to ensure sufficient image SNR without the specific absorption rate considerations imposed by the use of larger 
flip angles. 
 
 



 

 

 
 
References 
[1] Wang P, Block J, Gore JC. Chemical exchange in knee cartilage assessed by R1ρ (1/T1ρ) dispersion at 3T. Magn Reson 
Imaging. 2015;33(1):38-42. 
[2] Bustin A, Witschey WRT, van Heeswijk RB, Cochet H, Stuber M. Magnetic resonance myocardial T1ρ mapping: 
Technical overview, challenges, emerging developments, and clinical applications. J Cardiovasc Magn Reson. 
2023;25(1):34.  
  



 

 

P-18 

Magnetic Resonance Imaging as a Therapeutic Device: Utilization of Iron Oxide Nanoparticles 
(SPIONs) for Tumor and Cancer Treatment 

Sidharth Vinoda, Silpamol Jaimonb, Shazna Ashraf K Kc Amisha Sabud 

a,cUniversity of Aberdeen, Kings College, Aberdeen, AB24 3FX 
 b,dSwansea University, Singleton Park, Sketty, Swansea SA2 8PP 

 
Introduction: The application of Magnetic Resonance Imaging (MRI) as a therapeutic device has gained 
significant attention in recent years due to its potential in targeted tumor therapy. This research paper aims to 
explore the utilization of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) integrated with MRI technology 
for the treatment of tumors and cancer. By combining the unique properties of SPIONs with the imaging 
capabilities of MRI, a powerful platform for precise tumor imaging, targeted drug delivery, and localized 
hyperthermia treatment is created. 

Methods: In order to investigate the potential of SPIONs in tumor therapy, a comprehensive overview of their 
principles, including synthesis methods and physical and chemical properties, is provided. The paper delves into 
the functionalization of SPIONs with specific targeting moieties, such as antibodies or peptides, to enhance their 
tumor-specific accumulation. Furthermore, the role of MRI in SPION-based tumor therapy is elucidated, 
highlighting its ability to non-invasively image SPIONs, monitor their distribution in real-time, and assess 
treatment response. Advanced MRI techniques, such as Magnetic Particle Imaging (MPI), are also explored as a 
means to enhance the detection and quantification of SPIONs within tumors. 

Results: The unique magnetic properties of SPIONs open up a range of therapeutic strategies for cancer 
treatment. Hyperthermia treatment, achieved through the application of an alternating magnetic field, allows 
for localized heating of tumor tissues, leading to tumor cell death. Moreover, SPIONs can serve as carriers for 
chemotherapeutic agents, genes, or photodynamic therapy agents, enabling targeted drug delivery and 
controlled release. These versatile capabilities of SPIONs, combined with the imaging capabilities of MRI, offer 
great potential for improved tumor therapy outcomes. 

Discussion: The integration of SPIONs with MRI technology presents exciting possibilities for precise tumor 
imaging, targeted drug delivery, and localized hyperthermia treatment. However, there are several challenges 
that need to be addressed to facilitate the translation of SPION-based MRI therapy into clinical practice. 
Optimizing the synthesis of SPIONs to enhance biocompatibility and targeting efficiency is crucial. Additionally, 
further understanding of the underlying mechanisms of SPION-mediated therapy is needed, along with rigorous 
preclinical and clinical studies to ensure safety and efficacy. 

Conclusion: This research paper highlights the promising role of SPIONs in MRI-based tumor therapy, offering a 
comprehensive analysis of their synthesis, functionalization, and integration with MRI technology. The 
combination of SPIONs and MRI enables real-time monitoring of SPION distribution, assessment of treatment 
response, and targeted drug delivery. Continued advancements in SPION synthesis, functionalization 
techniques, and clinical studies are essential to unlock the full potential of SPION-based MRI therapy, ultimately 
improving the outcomes of tumor and cancer treatment. 
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Introduction: Numerical modelling of the electromagnetic fields in the MR environment using the Finite-
Difference time-Domain (FDTD) method has become an accepted way to assess safety in MRI, particularly in 
relation to Radiofrequency (RF) power deposition around orthopaedic implants. Guo et al [1], highlighted that 
where multiple orthopaedic implants are present in close proximity (as may be the case in patient who have 
undergone orthopaedic surgery to fix complex multiple fractures), Specific Absorption Rates (SAR) may be 
elevated to levels that may be considered unsafe. However, their models were simple, and it is the aim of this 
present work to examine whether using models that better represent real-world orthopaedic implants will 
produce different SAR results, specifically focussing on the magnitude and spatial distribution. 
Methods: Simulations were set up in Sim4Life (version 7.2.1.11125, Zurich MedTech AG, Switzerland) using the 
P-EM-FDTD solver. An 8-leg Birdcage coil was set up to produce a uniform B1 field oscillating at 64 MHz (1.5 T), 
with a model of the ATSM phantom filled with tissue-equivalent gel placed at the centre. Implant models were 
based around a DePuy Synthes titanium Locking Compression Plate (LCP) with screws. The plates were modelled 
to four levels of complexity: basic (modelled as a thick rectangle with similar dimensions), low, medium and 
high, where plate ends are bevelled and rounded off, screw holes are represented with chamfers and threads 
(Fig 1). Screws of two types (cortical and cancellous) were modelled as cylinders with conical points, heads, and 
screw threads for all plate complexities. Plate dimensions were 59×12×3.3 mm; screw dimensions were length 
10 mm, thread diameter 3.5 mm (cortical) and 4 mm (cancellous). The plates were simulated individually, placed 
in the same position in the phantom. All other simulation parameters were kept identical to ensure consistency. 
The simulated E-fields were converted into 0.1g averaged SAR values and these were plotted graphically at 
various positions around the implants. 
Results: It can be clearly seen from Fig. 1 that the SAR distributions vary significantly depending on the 
complexity of the implant. The basic configuration demonstrates intense hotspots at the corners, which become 
a more generalised single region in the centre of the plate-end when a realistic design is used.  

 
Fig. 1. Models of the LCP plate with differing complexity, with left to right showing high, medium low and basic 

complexity. Colours in the regions surrounding the implants represent the SAR distribution normalised to the maximum 
SAR observed in the basic plate.  

 
 
 
 



 

 

 
 
 

 
Fig. 2. Graphs showing 0.1 g local SAR at various locations around the implants with varying model complexities. Plots 

taken along a line in a plane where the SAR was maximal (“Go to Max” or G2M). Left: y-direction in X-Y plane; middle: x 
direction in X-Z plane and right: z direction in ZY plane. Purple – basic, yellow – low, red - medium, and blue – high. 

 
The graphs in Fig. 2 demonstrate that the SAR levels vary significantly with plate complexity, with the use of a 
simple plate resulting in a peak local SAR that is 1.9 times higher than that seen in the high complexity plate. 
Aside from the differences in spatial positions of the maxima, the peak SAR values between the medium and 
the high complexity plate are similar.  
Discussion: This work demonstrates that the complexity of the implant models can have a marked effect on 
both the distribution and intensity of SAR. Having a model that represents the implant faithfully may seem 
intuitive, but this requires a fine simulation grid size, long simulation times and higher computing requirements. 
The implications are that implants whose MRI safety is assessed using these computational methods may be 
seen as having a higher risk for RF induced heating, with the potential consequence that patients with such 
implants may not be scanned. It is therefore important that models should accurately represent the implants, 
although a high level of detail may not be necessary if representative peak SAR values only are required and the 
spatial distribution is not critical, which may be helpful in situations where limitations on computational power 
exist.  
Conclusions: When performing FDTD simulations to assess the effects of MR-related RF heating around 
orthopaedic implants, care should be taken to ensure that the model is a good representation of the real-world 
implants. Using overly simplistic models may lead to incorrect spatial distributions of SAR and elevated SAR 
values. 
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Introduction: 7T MRI offers improved resolution over 1.5T and 3T MRI with the drawbacks of increased 
radiofrequency (RF) field inhomogeneity and higher tissue power deposition [1]. Parallel transmission (pTx) 
addresses these issues by splitting the transmit coil into multiple, independently controlled channels [2]. 
However, designing subject-specific pTx pulses is time-consuming due to variations in B0 and B1

+ maps [3]. 
Universal pulses (UPs) provide a plug-and-play solution that balances image quality and time efficiency to 
increase the appeal of pTx 7T MRI for clinical use [3]. This abstract presents the process and preliminary results 
of designing excitation UPs for an in-house RF head coil introduced earlier this year for the 7T scanner at the 
Queen Elizabeth University Hospital in Glasgow. 
Methods: 
Equipment and data: Radiofrequency excitation pulses were designed for a MAGNETOM Terra 7T MRI scanner 
(Siemens Healthineers AG, Germany) equipped with a custom-built head coil with 8 transmit channels and 64 
receive channels (8Tx64Rx) (MR CoilTech Limited, UK). Siemens’ pTx pulse design (PPD) toolbox was modified 
and used for pulse design and simulation in MATLAB (The MathWorks, USA). Universal pulses were generated 
using transverse B1 maps previously acquired from 16 healthy subjects. The pulse design process was guided by 
5° UPs previously designed for an earlier prototype of the head coil with 8 transmit and 32 receive channels 
(8Tx32Rx). 
RF pulses and sequences: 5°, 15°, and 50° flip angle (FA) excitation pulses were designed to be used in 3D 
MPRAGE [4] and 3D FLASH [5] sequences. Optimum pulse designs were identified by using Bloch simulations to 
minimize the normalized root mean squared error (NRMSE) and specific energy dose (SED), using circularly 
polarized (CP) pulses and 8Tx32Rx UPs as standards. 
Algorithms: Three methods of numerical optimization were used, two of which used algorithms from MATLAB’s 
Global Optimization Toolbox: (i) GlobalSearch, a deterministic global minimum solver, and (ii) simulannealbnd, 
which uses the simulated annealing algorithm [6]. A 100ms RF pulse and combined optimized variables (COVs) 
were optimized using varying subject dataset sizes. CP pulses and 8Tx32Rx UP’s COVs were used as optimizer 
starting points. The third method, referred to as the "stacked method," used concatenated adjustment data 
from 14 subject maps and Siemens’ bespoke PPD toolbox optimization, based on the process described by 
Aigner et al. [7]. 
Validation: Phantom tests were performed using 3D FLASH and a head-and-shoulders phantom with similar 
conductivity and permittivity to that of brain tissue for validation. Preliminary results were obtained from three 
healthy subjects using 3D MPRAGE and 3D FLASH, comparing CP, 8Tx32Rx UP, 8Tx64Rx UP, and a subject-specific 
pulse. The healthy-subject scans in vivo were performed using a second prototype of the 8Tx64Rx head coil. 
Results: GlobalSearch and simulannealbnd methods provided poor results, with high SED and inhomogeneous 
excitation patterns despite low NRMSE. The stacked method yielded low NRMSE and SED with good image 
uniformity and was applied in-vivo. Fig 1 compares the performance of CP, 8Tx32Rx UP, 8Tx64Rx UP, and 
tailored design for 5° FA excitation pulses on the 14 subject maps used to design the pulse. The 8Tx64Rx UP 
NRMSE (~25%) outperforms both CP (~40%) and 8Tx32Rx UP (~30%), and its SED (0.0075) is also much lower 
than that of 8Tx32Rx UP (0.0180). Phantom testing and the study in vivo of the 5° pulse (Fig 2) validate these 
simulation results, with low NRMSE of 25% and SED of 0.0075. The 15° and 50° FA UPs also perform better than 
CP in NRMSE but have poor excitation-pattern homogeneity in simulation and in vivo. 



 

 

 
Fig. 1. Simulated NRMSE and SED for a 5° excitation pulse across 14 subjects. The 8Tx64Rx UP NRMSE outperforms 
both CP and 8Tx32Rx UP but not a subject-specific tailored pulse. 8Tx64Rx UP has higher SED than CP but performs 

better than 8Tx32Rx UP. 

 
Fig. 2. Images acquired in vivo (top row) and simulation results (bottom row) for RF excitation pulses using CP, 8Tx64Rx 

UP, and a tailored (subject-specific) design. The UP has a more homogeneous excitation and image as well as better 
contrast compared to CP, but the subject-specific pulse has the most homogeneous excitation. 

 
Discussion: The limited success of the MATLAB optimization algorithms was likely due to time constraints and 
computational limits. Preliminary results using the stacked method showed effectiveness in small flip angles. 
Further development and testing in a wider subject group are needed to confirm its effectiveness and improve 
upon larger FA pulse design. A similar method can also be applied to designing inversion UPs for a more 
comprehensive solution. 
Conclusions: Initial results from simulations and scans in vivo suggest that low-flip angle excitation UPs designed 
with the stacked method can achieve sufficient uniformity at 7T with limited image-quality effects from RF field 
inhomogeneity and SAR values that allow practical application in vivo. 
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Introduction: Diffusion-weighted MRI (dw-MRI) simulations investigate how microstructural geometry impacts 
the measured dw-MRI signal. There are several complementary microstructural phenomena that also impact 
MRI measurements, including water exchange, magnetisation transfer (MT), and off-resonance effects. If these 
phenomena cause a substantial signal deviation, it could bias the dw-MRI measures, as these phenomena’s 
signal contributions are often ignored and incorrectly attributed to diffusion by dw-MRI models [1,2]. To address 
this, a novel Monte-Carlo simulator integrating both diffusion and all the aforementioned phenomena was 
developed [3]. Here we use this simulator to estimate the dw-MRI signal deviation induced by MT and 
membrane permeability. 
 
Methods: Two analytical descriptions of the dw-MRI signal evolution were chosen as references for comparison 
with simulation results: Mitra’s approximation at short diffusion times [1] and the diffraction-like signal pattern 
at high q-values [2].  
 
The intrinsic diffusivity (D) was set to 2µm2/ms for all simulations to mimic tissue fluid. To simulate MT, Monte-
Carlo spins were divided into two exchanging groups: the bound pool and the free pool. The bound pool is 
localised at user-generated obstructions and has a very short relaxation time, while the free pool occupies the 
remaining space. When a spin collides with an obstruction it has a certain probability of transferring to the 
bound pool. This probability is determined by the average time being bounded and the ratio between surface 
spin density on the obstruction and the volume density in the free pool, which are adjustable parameters in the 
simulator. For ease of interpretability, we quantify the size of the MT effect by its effect on the T2 (i.e., effective 
T2). To simulate permeability, the simulator allows spins to pass through an obstruction with a user-defined 
probability. 
For the diffraction pattern simulation, 105 spins were simulated between regularly spaced parallel walls 1µm 
apart with an instantaneous diffusion-weighted gradient applied orthogonally to the wall. Simulations were 
performed with varying MT or permeability, with the diffusion time (t) set to 40ms for MT and 10ms for 
permeability to ensure long diffusion time relative to the wall separation. Signal attenuation at various q-values 
was obtained and compared to the analytical solution 𝑇𝑇(𝑞𝑞) = sin(𝜋𝜋𝜋𝜋𝜋𝜋)

𝜋𝜋𝜋𝜋𝜋𝜋
.  

For Mitra’s approximation, 106 spins were used to reduce noise generated by random motion and the wall 
separation was changed to 10µm. The q-value was fixed at 1 rad/µm and the signal attenuation was recorded 
at various diffusion times. The gap separation and the intrinsic diffusivity (D0) were then estimated using Mitra’s 

approximation equation 𝐷𝐷(𝑡𝑡) = 𝐷𝐷0 �1 −
4𝑆𝑆
𝑉𝑉

9√𝜋𝜋
 (𝐷𝐷0𝑡𝑡)

1
2� + 𝑂𝑂(𝐷𝐷0𝑡𝑡), where D(t) is the ADC estimated from signal 

attenuation, S/V is the wall separation’s reciprocal. 
 
Results: As shown in Figure 1, realistic MT strength has no observable effect on the diffraction pattern. 
Permeability reduces the signal amplitude, but does not shift the locations of the extrema.  For Mitra’s 
approximation, Figure 2 shows that both MT and permeability cause overestimation of wall spacing.  
 
Discussion: To first order one might expect the relaxation due to MT to affect the signals with and without 
diffusion weighting equally and, hence, not affect the signal attenuation. However, some spins will by chance 
interact more with the obstructions. These spins will both experience more restrictions and have a shorter 
effective T2 due to MT. This effect is particularly pronounced for the short diffusion time in the Mitra’s 
approximation, where MT causes a reduced signal contribution from spins interacting with the obstructions, 



 

 

which causes us to overestimate the compartment size. At the longer diffusion times used in the diffraction 
experiment, this effect is less pronounced, because spins are more thoroughly mixed and have roughly equal 
probability to interact with obstructions and experience MT. 
 

Permeability reduces the signal amplitude for the diffraction pattern because it allows spins to displace beyond 
the walls, which causes further dephasing under diffusion encoding. In Mitra’s approximation, permeability will 
reduce the fraction of spins that interact with the obstructions, which leads to an overestimation of the gap size 
in a similar way as MT. 
We aim to build on these findings and use the simulator to investigate other phenomena that impact MRI 
measurements, alongside alternative MRI modalities.   
Conclusions: We used a novel Monte-Carlo simulator that combines different microstructural phenomena to 
simulate MT and permeability’s effect on dw-MRI signal. We have found in practice that MT and permeability 
don’t cause significant errors in single compartment dw-MRI measurements comparing to other factors such as 
irregular structure geometry. It is likely that MT’s effect will be more significant in a multi-compartment setting. 
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Fig. 1. Changes in diffraction pattern due to magnetisation transfer (MT) (left) and permeability (right), 

effective T2 is the T2 driven purely by MT effects. 

  
Fig. 2. Biased gap estimation using Mitra’s approximation due to MT (left) and permeability (right) 
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Introduction: MR images are acquired and reconstructed assuming that the main field, B0, is uniform. In practice, 
B0 is typically only uniform close to isocentre of the imaging volume. In previous work we designed a 0.15T 
scanner [1] that generates B0 using a permanent magnet array. The imaging volume of this scanner is 
approximately a sphere of 15cm diameter. Away from the isocentre our images show significant distortion. To 
compensate for this distortion, we modelled, using computer aided design (CAD), and 3D printed a calibration 
phantom. An MR scan was taken of the printed phantom, and a simulated scan of the phantom was generated. 
Soft registration techniques [2,3] were then used to register the scan to the simulation in order to compensate 
for and quantify the 3D distortion field. 
Methods: The calibration phantom filled the entire imaging volume of the scanner to capture all distortion 
present in the data. The internal structure was a 3D grid of 5mm radii spheres (with a larger 7.5mm radius sphere 
at the phantom centre) spaced 17.5mm apart, with spars in each layer supporting the spheres. 9 layers were 
printed in total. The internal space was filled with vegetable oil to provide contrast in the MR scan. The outer 
wall had markings modelled into it to orient the phantom correctly in the scanner. A scout scan was used to 
align the large central sphere with the scanner isocentre. A 150x150x150mm scan of the phantom was then 
taken with 1x1x1mm voxels.  

 
Fig. 1. Overview of modelling, construction, simulation, MR scanning, and distortion compensation results. Top row, left 
to right, shows CAD to final 3D print. Bottom left shows the simulated scan of the CAD. Bottom right shows the MR scan 

of the 3D print. Bottom middle shows the MR scan registered to the simulated scan. 
 
The CAD/simulated scans were produced using CadQuery [4], a Python based programmatic CAD software. The 
simulated scan of the phantom was generated by modelling a 1x1x1mm voxel and computing its intersection 
with the phantom geometry, the volume of intersection being proportional to voxel intensity. This was repeated 
for all voxel coordinates corresponding to those in the real scan. The real scan was soft-registered to the 
simulated scan using B-Spline transforms to account for 3D distortions. Before the soft registration a rigid Euler 



 

 

registration was performed to eliminate any systematic rotation/translation error from the compensation. The 
implementation of the registration algorithms were from elastix [2,3] which also output the final transform 
parameters, allowing the distortion compensation to be applied to other images.  
Results: The top left image in Figure 1 shows the CAD model of the phantom. From this model the 3D print (top 
middle, and top right) and simulated scan (bottom left) were generated. The bottom right image shows the real 
MR scan of the phantom, and the bottom middle shows the registration results. The data was acquired sagitally, 
showing a cross section of all layers; spars can therefore only be seen travelling left to right. In the real scan 
data, the central sphere and close neighbours show low distortion whereas further from the centre, the spheres 
follow curves, showing in plane distortion. The cross sections of the spheres vary in radii further from the centre, 
and the spars between spheres bend in and out of the plane, showing out of plane distortion. The real scan also 
contains a diamond shaped artificial edge where B0 drops off.  
The simulated scan, also shown sagitally, is a distortion free representation of the phantom, all spars and 
spheres are consistent across the image. At edges within the structure the partial volume effect can be seen, 
the simulated voxels partially overlap with the phantom geometry here. The simulated scan doesn’t have an 
artificial edge, it captures all of the phantom that fit inside the field of view. 
The result of registering the real scan to the simulated scan shows a significant reduction in distortion. The 
spheres form a regular grid with consistent radii, and the spars are visible across the image.  
Discussion: The registered image shows a regular grid of spheres and spars much further from the isocentre 
than in the original data.  By registering the real scan data to the simulated scan data, the 3D distortion can be 
compensated for. There is still distortion present towards the artificial edges of the image where the original 
distortion was greatest. This could be improved with a more finely tuned registration mask near the artificial 
edge. The partial volume effect present in the simulated scans is an important characteristic to replicate, without 
it, the simulated scans would have unrealistically sharp edges which would be detrimental to the registration 
process. Distortion during image acquisition also causes bright/dark areas as the voxels are 
stretched/compressed. This artifact is present in the real scan and registered image. However, with the 
transformation known, the voxel compression ratios could be calculated and intensities scaled proportionally 
to correct for this. 
Conclusions: Registration of real MR data of a 3D printed phantom to a simulated ‘ground truth’ scan of the 
phantom CAD model provides 3D distortion compensation using only image data. A field map of B0 is not 
necessary, making the method simple to implement. The transform parameters output from the registration 
are then applicable to subsequent images taken with the same scanner/sequence. Therefore, distortion of these 
images can also be corrected, with the potential to also correct for intensity artifacts. The use of programmatic 
CAD enables easy sharing of the technique as users do not need 3D modelling skills to generate a similar 
phantom/simulation. 
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Introduction: Interest in MRI in radiotherapy (RT) has increased due to its unique advantages such as excellent 
soft tissue contrast. This project aimed to evaluate whether anthropomorphic phantoms enhance compliance 
with these professional bodies’ quality assurance guidelines for MRI in RT as compared to other phantoms. 
 
Methods: Three phantoms were used in this project: an anthropomorphic multimodality head and neck 
phantom, an American College of Radiology (ACR) large MRI phantom, and a vendor MRI QA phantom, which 
is a homogeneous phantom. The following tests were carried out: 
(1) Magnetic Field Drift test (2) Transmitter and Gain Calibration: T1 relaxation times were calculated for each 
phantom to determine the appropriate repetition time (TR) to use with each of them. The automatic and 
manual transmitter gain values were obtained using all phantoms Then, the difference between automatic 
and manual transmitter gain values was compared. (3) SNR/image quality/ when employing RT accessories: 
Two scans were obtained for all phantoms. The first scan was performed without the use of RT accessories, 
and the second was performed with RT accessories. Signal-to-noise ratio (SNR), Percent Image Uniformity 
(PIU) and percent signal ghosting (PSG) values were calculated using all phantoms. 
Tests 1 and 3 were repeated twice immediately upon completion, without changes to the phantom setup, and 
then, they were repeated twice more with repositioning the phantom. The coefficient of variation (CoV) was 
calculated for both cases. 
(4) QA for MRI-Computed tomography (CT) registration: CT scans were obtained for the anthropomorphic and 
ACR phantoms. Then, the CT and MRI obtained for the phantoms in the treatment position were rigidly 
registered within Raystation (RaySearch, Sweden). To calculate the dice similarity coefficient (DSC), a contour 
of the structure in the middle of the ACR phantom and the brain in the anthropomorphic phantom (Figure 1) 
was drawn. The contour was repeated two times to calculate the CoV. (5) End to end: After completing the 
image registration, a treatment plan was created for the anthropomorphic phantom and ACR phantom within 
Raystation to deliver 2 Gy to the target volume (Figure 1). The radiation dose will be delivered to the ionisation 
chamber in the anthropomorphic phantom to compare the measured dose with the planned dose. 
 

 
Fig. 1. 1a. MRI and CT images of ACR phantom and anthropomorphic phantom. 1a1) Axial MRI image of ACR phantom, 
1a2) Axial CT image of ACR phantom, 1a3) Axial MRI image of anthropomorphic phantom and 1a4) Axial CT image of 
anthropomorphic phantom. Dashed contour lines show structures that have been contoured to calculate DSC. 1b. 
Radiation-treatment-planning CT scans. 1b1) Axial image of ACR phantom and 1b2) sagittal reconstruction of 
anthropomorphic Phantom. Colour wash display shows the dose distribution. 
 



 

 

Results: (1) Magnetic Field Drift test: Figure 2 shows the CoV between the central frequency values obtained 
from each phantom. (2) Transmitter and Gain Calibration: T1 relaxation times of the vendor phantom, ACR 
phantom, and anthropomorphic phantom were 100, 145.7, and 1200 ms, respectively. Experiments on MRI 
transmitter gain using three phantoms showed an increasing discrepancy between automatic and manual 
calculations, from 1.3% with the Vendor phantom, to 6% with the ACR phantom, up to 12.3% with the 
anthropomorphic phantom. (3) SNR/image quality/ when employing RT accessories: Figure 2 shows the CoV 
between the results of SNR, PIU and PSG without RT accessories and with RT accessories for each phantom. (4) 
QA for MRI-CT registration: The CoVs between the DSC values were 0.16 and 1.36 for the ACR and 
anthropomorphic phantom, respectively. (5) End to end: A treatment plan for the anthropomorphic and ACR 
phantom has been successfully created. The anthropomorphic phantom can accommodate a dosimeter, while 
the ACR phantom cannot. Work is ongoing to complete this test. 
 

 
Fig. 2. The CoV between the results. 

 
Discussion: This project demonstrated that the anthropomorphic phantom can be used in tests such as the 
magnetic field drift and in evaluating SNR, PIU and PSG, like other phantoms. As for the transmitter and gain 
calibration test, the differences between automatic and manual transmitter gain calculated using the 
anthropomorphic phantom and ACR phantom were large as compared to the difference calculated using the 
vendor phantom. Therefore, the anthropomorphic and ACR phantoms are not ideal for this test. Regarding QA 
for MRI-CT registration, the ACR phantom has much clearer structures than the anthropomorphic phantom. 
The brain contrast in the CT anthropomorphic phantom images is less pronounced than the structures of the 
ACR phantom (Figure 1). This may lead to a less accurate contour drawing when using the anthropomorphic 
phantom. However, the anthropomorphic phantom appears superior to the other phantoms in terms of QA 
for MRI-CT registration and the end-to-end test because the complexity of the phantom is more 
representative of the patient and a dosimeter can be placed inside the phantom. 
 
Conclusions: The anthropomorphic phantom is important in QA procedures for MRI in RT, especially in QA for 
MRI-CT registration and end-to-end tests, and can be considered a complement to the other phantoms. 
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Introduction: Intraoperative MRI is the application of MRI during a surgical procedure to provide the surgical 
team with up to date anatomical information to assist them to make more precise and informed decision during 
an operation (e.g. resection of brain tumour). This requires the use of a stereotactic frame or RF coil that affixes 
to the patient head throughout the procedure. While standard diagnostic coils usually have defined Quality 
Assurance (QA) procedures, the coil configuration used for intra-operative MR acquisition does not. In addition, 
intra-operative MRI requires assurance not only of the image quality but also the ability to identify the fiducials. 
The QA programme described here has been developed in order to monitor the condition of a third party 
intraoperative head coil independent of any existing QA programme established for the MRI scanner and 
standard RF coils [1].  
 
Methods: The QA programme was set up for a NORAS MRI Products intraoperative 8-channel head coil (Noras 
MRI products, Höchberg, Germany) in conjunction with a Philips Ingenia Elition X 3.0T MRI scanner used for 
Intraoperative MRI. QA testing has been performed monthly since May 2022 by acquiring a 3D T1-weighted 
rapid gradient echo (FFE) 1.5mm isometric image with two dynamics of a standard Philips 5L bottle phantom 
(repetition time = 5.8 ms, Echo time = 2.6 ms, flip angle = 8°, NSA = 1, BW=285) with a large FOV (400 x 322 x 
250 mm) covering the whole phantom and fiducial markers and sent to a workstation for analysis. 
 
Offline analysis is performed by identifying the locations of the 5L bottle phantom and 14 fiducial markers 
(positioned on the interior of the anterior component of the coil) within the image (Matlab, MathWorks). The 
number and coordinates of the fiducials is evaluated as a test of consistency and equipment setup. A ROI is 
defined as a sphere covering 75% of the volume of the bottle phantom located within the coil. The SNR within 
this ROI is calculated using the subtraction method [2] for each individual element image as well as the combined 
image. An SNR profile along the length of the phantom bottle and used to determine the distance (D) outside 
of the coil at which the SNR within the phantom has decreased to 50% of the SNR of the phantom within the 
coil. The mean signal intensity and SNR of each of the fiducial markers are also calculated.  
 
Baseline measurements were acquired by performing five repeated QA tests on the coil and phantom in order 
to establish standard errors for the measurements. The first 15 sets of measurements were then used to 
establish threshold values for the measurements of SNR and D. 
 
Results: Figure 1 shows the SNR of the bottle phantom within the coil from May 2022 to June 2023. It can be 
seen that although no measurement has exceeded the established thresholds, there appears to be a steady 
downward trend in SNR (R2 = 0.55). The individual elements were all functioning correctly for each test. No 
obvious trends were visible in the measure of D or fiducial marker signal intensity. Every fiducial marker was 
identified in every test and their relative coordinates remained consistent (rmean = 139.5±2.5mm, θmean = 
1.95±0.09°, φmean = -0.24±0.04°). 
 



 

 

 
Fig. 1. Signal to noise ratio (SNR) of bottle phantom in NORAS Coil from May 2022 to June 2023 with thresholds shown in 

red and trend line in black 
 

 
Fig. 2. Signal to noise ratio (SNR) of bottle phantom in NORAS Coil for each coil element from May 2022 to June 2023  

 
Discussion: The downwards trend in SNR for the bottle phantom was not reflected in weekly QA performed on 
the scanner which suggest NORAS coil SNR deterioration over time. However no thresholds have been exceeded 
and testing will be continued. If this trend were to continue then the threshold could be expected to be breached 
in December 2023.  
 
Conclusions: In order to ensure accurate stereotactic planning from MRI a monthly QA programme of the third 
party NORAS coil has been established. The results of this programme confirm the coil has been functioning at 
expected SNR levels throughout its usage in intraoperative MRI cases. However, a downward trend in SNR 
suggests that the coil could be deteriorating over time.  
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Introduction: Dynamic contrast-enhanced (DCE-) MRI is widely used to assess perfusion, permeability, and other 
tissue properties. Commonly used tracer kinetic models describe passage of intravenously injected contrast 
agent through tissue [1]. The model parameters reflect physiological properties useful for evaluating disease 
physiology, progression and treatment. For example, blood-brain barrier (BBB) integrity may be evaluated with 
the permeability-surface area product PS, which characterises leakage of contrast agent from blood capillaries 
to extravascular extracellular space (EES) [2]. However, differences in scanner hardware, acquisition and analysis 
can introduce measurement uncertainties, causing significant variation in fitted model parameters [1,3].  
Adapted DCE-MRI phantoms are needed for validation of novel techniques, quality assurance and multi-site 
harmonisation [4]. However, challenges in engineering compromise the ability of existing phantoms to 
recapitulate DCE-MRI measurements; specifically they do not allow manipulation of key relevant tissue 
properties like the permeability-surface area product (PS), plasma volume fraction (vp) and EES volume fraction 
(ve). 
Previous work demonstrated the use of 3D-printing to fabricate phantoms mimicking tissue behaviour in DCE-
MRI measurements [5]. Their design consisted of a porous 3D-printed (3DP) material containing channels to 
represent blood vessels, which was integrated into a flow circuit generating a clinically relevant arterial input 
function (AIF). This study investigates how changes in 3D-printing parameters affect DCE-MRI model 
parameters. We hypothesised that increasing the volume fraction of pore forming agents in the 3D-printing 
formulation (vpore), while keeping the printed channel volume fraction (vchan) constant, would increase ve and PS 
as measured by DCE-MRI. Likewise, we hypothesised increasing vchan while keeping vpore constant, would increase 
vp and PS. 
Methods: Phantoms were fabricated using digital light processing printing [6]. vpore is the volume fraction of pore 
forming agents in the printing formulation (proxy for ve). vchan represents the channel volume fraction defined 
by a computer model (proxy for vp). Nine phantoms were fabricated with vchan varied between 0.08, 0.11 and 
0.14 (for designed channel diameters of 0.65, 0.75 and 0.85 mm with 2 mm centre-to-centre spacing) and vpore 
varied between 0.55, 0.65 and 0.74. 
A flow circuit facilitated contrast agent injection. Water was pumped (17 mL/min) to the phantom. 3 mL of 
gadobutrol (69 mM) was injected into a mixer (containing 21 mL of water) upstream of the phantom followed 
by dilution with 140 mL of water. This protocol was optimised to reproduce the population-averaged AIF model 
by Georgiou, et al [7].  
Phantoms were scanned using an established clinical DCE-MRI protocol [1]. This consisted of a 3D T1W spoiled 
gradient echo sequence using a 3T Siemens Skyra scanner and 32-channel phased-array head coil, TR/TE = 3.4 
ms/1.7 ms, FA = 15°, 2 x 2 x 2 mm resolution (interpolated to 1 x 1 x 2 mm), and 53 volumes acquired every 31.7 
s. Mean signal intensities of the AIF and tissue mimicking material regions of interest were converted into 
concentration and fitted with the extended Tofts (ET) model as described previously [1]. The first post-contrast 
data point was omitted during fitting to attenuate effects of flow [3]. 
Results: Figure 1A compares typical measured phantom AIFs with a clinical AIF model. The area under these AIF 
curves was within 14% of the model AIF. Figure 1B shows the ET model fitted to representative phantom tissue 
data. The ET model fit data with mean absolute percentage error (MAPE) below 3.0%. 
 



 

 

 
 
Figure 2A-C shows ET model parameters for all phantoms. Increasing vpore from 0.55 to 0.74 while fixing vchan at 
0.11 causes a 29% increase in PS, a 24% increase in ve and a 22% decrease in vp. Increasing vchan from 0.08 to 0.14 
while fixing vpore at 0.65 causes a 36% increase in PS, a 1% increase in ve and a 53% increase in vp. All phantoms 
shared these trends. 

 
Fig 8. Comparison of (A) population-averaged AIF model with measured phantom AIFs and (B) ET model fitted to 

phantom tissue concentration curves for (Print 1) vpore = 0.55 and vchan = 0.14, (Print 2) vpore = 0.74 and vchan = 0.14 and 
(Print 3) vpore = 0.55 and vchan = 0.08. 

 
Fig 9. (A-C) Model parameters obtained by fitting the ET model to all phantom data. Error bar for vchan = 0.14 and vpore = 

0.74 shows ± 1 SD based on four repeated experiments. 

Discussion: The ET model fitted all phantom data, confirming that phantom DCE-MRI signals can be modelled 
using a two-compartment pharmacokinetic model.  As hypothesised, an increase in phantom vpore led to an 
increase in fitted PS and ve, reflecting faster transport between channels and pores, and an increase in porosity, 
respectively. Similarly, an increase in phantom vchan led to an increase in fitted PS and vp, reflecting increased 
channel surface area and channel volume fraction, respectively. Another trend is vp decreasing with increasing 
phantom vpore, likely due to water content within channels (as a fraction of the total phantom water content) 
decreasing because of increasing vpore. Future work will focus on: (1) comparing phantom performance between 
clinical and preclinical scanners and (2) establishing empirical values for phantom porosity and channel size in 
order to elucidate the relationship between physical phantom and DCE-MRI model parameters. 
Conclusions: By combining tuneable 3DP phantoms with a flow circuit, we mimicked in-vivo DCE-MRI 
experiments and altered modelled “tissue” properties in a controllable fashion. These results suggest that 3DP 
phantoms have the potential to address limitations of previous phantom designs and facilitate technical 
validation, quality assurance and multi-site harmonisation of DCE-MRI. 
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Introduction: To investigate the use of a perfluorocarbon (PFC) for use in as diagnostic tool in the investigation 
of inflammation inside the human body, an eight-channel transceiver 1H/19F dual-frequency 3-Tesla body array 
has been developed and evaluated on a human subject. The switching between the two frequencies is enabled 
by the control signals that are programmed through the coil file. The dual-frequency operation enables the same 
coil to be used at both frequencies, which reduces scan time, improves patient comfort, and provides accurate 
anatomic localisation. 
The array consisted of four transceiver elements each on the anterior and posterior halves. A 1x2 power splitter 
is used to feed the RF power from the scanner to the two halves and the power is split further within each half 
using a 1x4 splitter. The transmit phase between the coil element input and power splitter is controlled by 
coaxial cable lengths to homogenise the B1

+ field over the region of interest (ROI) containing the liver and spleen.  
This abstract presents the first in-vivo results, and a comparison with the electromagnetic (EM) simulations used 
for B1

+ homogenisation, SAR assessment and validation of the dual-frequency array.  
 
Methods: EM simulation of the radiofrequency (RF) coil was performed using CST Studio Suite 2021 (Dassault 
Systems, France). The simulations were performed at both 1H and 19F frequencies (123.2 MHz and 115.9 MHz). 
The coil is locally shielded and extended 200mm along the z-direction. The adjacent array elements are 
overlapped and the coupling between the next-neighbouring elements are decoupled using transformers2. The 
model included all component losses, scanner bore and cable loss.  
The coil was tuned and matched to the Duke body model5, and single channel B1

+ field maps were extracted to 
calculate the phase shims required to generate the preferred B1

+ distribution. The optimisation criteria included 
the mean reference voltage, local 10g SAR, SAR efficiency and B1

+ homogeneity for a ROI covering the central 
mass of the Duke torso. A final shim was selected maximising the homogeneity of B1

+ field in the liver and spleen 
and the cable phases on the coil adjusted accordingly. Using this final shim solution, additional simulations of 
other body models and coil positions were generated. These were used along with experimental validation of 
the B1

+ maps and temperature rise on phantoms to perform safety validation. With conservative safety margins 
applied in the coil file, the coil was approved locally for human imaging. Experimental validation of the B1

+ maps 
was performed in a 3T MRI system (MAGNETOM Prisma, Siemens Healthineers Germany). 
To demonstrate the image quality at 1H and 19F frequencies a subject was positioned with a vial containing the 
ABL-101 solution attached to the left anterior side of the coil housing and imaged using a gradient echo 
sequence at the 1H frequency and at the 19F frequency. Switching may be done without disturbing the subject 
by moving the coil plug from the 1H to 19F /X-nuclei plug on the patient table. 
 
Results: A comparison of the measured and simulated B1 maps is shown in Figure 1 for the subject and for the 
Duke human body model 1H frequency. The location of both slices is 5mm inferior to the isocentre.  
Figure 2 shows the gradient echo images of the subject, showing the coverage (a-c), a TSE image acquired during 
a breath hold (d), and an image acquired at the 19F frequency (e), where we can clearly see the test vial filled 
with ABL-101. 
 

  



 

 

  
Fig. 1. (right) Measured B1

+ map in human subject (left) simulated B1
+ map in “Duke” body model. 

Demonstrating the optimum shim solution for imaging of the liver and spleen.  

 
Fig. 2 (a, b) localiser images, (c) GRE image at 1H and, (d) TSE image at 1H, (e) GRE image at 19F showing vial containing PFC 

compound. 
 
Discussion: In selecting the best shim for this application, we chose the minimum standard deviation for its 
coverage since it is desirable in this application that we can get a consistent signal from both the liver and the 
spleen. While the SAR is higher in this case it is not so high that it should provide any difficulty and the benefit 
of increased coverage is of higher value here. The ability to switch between 19F and 1H is advantageous as we 
can maintain the subject position for both imaging sequences. We were able to achieve a 0.85 mm resolution 
using a TSE sequence with good homogeneity over the liver.  
 
Conclusions: For the eight-channel transceiver 1H/19F dual-frequency 3-Tesla body array, B1 simulations were 
performed at both frequencies and experimentally validated at 1H frequency. Simulation and measurement 
shows the robustness of the single phase shim solution in both phantom and in-vivo studies.  
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Hanna, K P-01, PT1-6  Hollingsworth, K PT4-1 
Harrison, D PT4-1  Holmes, W  
Herrmann, A PT3-4  Hu, Y P-20 
Hidalgo-Tobon, S PT2-5  Husain, E P-01, PT1-6 
Holland, C PT4-1  Hutchinson, G P-04 

I 
Idris, M PT4-4  Inglese, M P-14 

J 
Jafarpour, M PT4-2  Jaimon, S P-18 

K 
Kammayani, H PT1-7  Kiersnowski, O PT4-5 
Karat, B P-16  Kiersnowski, O P-07, P-08 
Karsa, A PT4-5  Kirkham, F P-09 
Keith, G P-26  Klunder-Klunder, 

M 
PT2-5 

Kelly, R PT4-3    

L 
Labat, D PT1-2  Lee, M P-09 
Lahrech, H PT1-6, PT3-3  Lim, D PT3-1 
Lally, C PT2-1  Lip, G PT1-6 
Lamb, R P-23  López-Martíne, B PT2-5 
Lanz, H P-22  Low, Z PT3-1 
Lau, C P-25  Luo, J P-11 
Lecoeur, B P-15  Lurie, D PT1-1 
Lee, J PT3-1    

M 
MacLeod, M P-03, PT1-5  McGinley, J P-22 
Maguire, M PT3-4  Miller, K P-21 
Maier, O PT1-6  Milovic, C P-07 
Mallikourti, V P-02, P-03, PT1-5, 

PT1-6 
 Miranda-Lora, A PT2-5 

Marciani, L PT2-2  Morgan, P P-24 
Martin, C   Mulvany, T PT2-3 
Masannat, Y P-01, PT1-6  Muralidharan, L P-10 
Mathew, M P-10  Murray, G PT1-3 



 

 

Mcelhinney, P P-26    

N 
Nair, P P-15  Nicholas, R P-19 
Nassar, J P-08  Novak, J PT2-3 
Nasser, J P-07  Nwaubani, P P-16 
Neal, M PT4-1    

O 
Oelfke, U P-15  Oren, N P-03 
Oliveira-Stahl, G P-14    

P 
Panek, R P-24  Poptani, H PT3-4 
Peet, A PT2-3  Poptani, H PT3-2 
Pinna, O P-12  Porter, D P-20 
Podder, R P-25  Punwani, S P-10 
Poptani, H PT3-1    

R 
Ramsay, G PT1-3  Ross, J P-03, P-17, PT1-1, 

PT1-6, PT4-3 
Retter, A P-10  Ross, P PT1-5 
Ristic, M P-22  Rowe, S PT2-6 
Rocha, S PT3-4    

S 
Sabu, A P-18  Shmueli, K P-05, P-06, P-07, 

P-08, P-09, P-10, 
P-11, PT2-1, PT4-
5 

Sahib, N PT3-1  Shumbayawonda, 
E 

PT2-5 

Saini, F PT4-4  So, P PT2-5 
Salameh, N PT1-4, PT4-6  Speight, R P-23 
Samuel, L PT1-3  Speirs, V P-01 
Saniour, I PT1-2  Spiller, R PT2-2 
Santosh, C P-26  Stewart, G P-03 
Sarracanie, M PT1-4, PT4-6  Stone, A PT2-1 
Sarwar, M P-25  Stormont, R PT1-1 
Senn, N P-03, PT1-5  Strydom, A PT4-4 
Senn, N PT1-3  Swain, C PT2-6 

T 
Tan, A PT3-1  Thomas, E PT2-5 
Tang, A PT1-7, PT2-4  Thorpe, J P-24 
Taylor, M P-19  Thrippleton, M P-25 
Taylor, M PT2-2  Thust, S P-14 
Teh, I P-23  Tornifoglio, B PT2-1 
Tendler, B P-21  Tunney, R PT2-3 
Thelwall, P PT4-1  Turnbull, A P-04 



 

 

Thomaides-
Brears, H 

PT2-5  Tyler, D PT4-2 

V 
Valkovič, L PT4-2  Velan, S PT3-1 
Vallatos, A P-25  Verma, S PT3-1 
Varotto, S PT1-2  Vinod, S P-18 

W 
Wahli, W PT3-1  Williams, S PT4-4 
Waiter, G PT1-5  Williams, S P-20 
Waiter, G P-03  Wood, T P-12, PT4-4 
Waldman, A P-25  Work, L  
Walker, A P-23  Worthington, L PT2-3 
Wetscherek, A P-15    

Y 
Yaligar, J PT3-1  Yusoff, A PT2-7 
Yip, Y PT3-1    

Z 
Zheng, Z P-21  Zou, Y P-13 
Zihlmann, G PT4-6    

 







https://www.bruker.com/en.html
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