Techniques for Inferring Mileage from the Department for Transport's MOT Data Set

R. Eddie Wilson
Jillian Anable (Aberdeen), Sally Cairns (TRL/UCL), Tim Chatterton (UWE), Oliver Turnbull (Bristol) and others
EPSRC grants EP/J004758/1 EP/K000438/1

Faculty of Engineering
University of Bristol
March 25, 2015

UK MOT (Ministry of Transport) test

- MOT: the UK's annual safety inspection for all road vehicles older than 3 years
- Since 2005: the results have been captured and stored digitially
- Since November 2010 - the DfT has published this data online spanning back to 2005.
- Key interest: the odometer reading recorded at each test.

A sample of the published data

```
626966|2010-01-18|4|N|P|38198|DE|BMW|523I SE TOURING AUTO|GREEN|P|2494|1998
626977|2010-03-03|4|N|P|25864|ST|LAND ROVER|FREELANDER HSE TD4|BLACK|D|2179|2007
626984|2010-03-04|4|N|P|32884|YO|LAND ROVER|RANGE ROVER SP HSE TDV8 A|BLACK|D|3628|2007
626991|2010-03-26|4|N|F|91196|PL|MERCEDES|ML 320 AUTO|SILVER|P|3199|2000
627020|2010-02-02|4|N|PRS|29180|DH|MERCEDES|ML 320 CDI SE AUTO|SILVER|D|2987|2006
627023|2010-02-24|4|F|P|62713|MK|BMW|325I SE AUTO|SILVER|P|2494|2001
627024|2010-02-24|4|N|F|62713|MK|BMW|325I SE AUTO|SILVER|P|2494|2001
627025|2010-02-22|4|N|F|62647|LU|BMW|325I SE AUTO|SILVER|P|2494|2001
627041|2010-03-04|4|PL|P|230304|IP|MERCEDES|300TE AUTO|GREY|P|2962|1990
627042|2010-03-04|4|N|F|230304|IP|MERCEDES|300TE AUTO|GREY|P|2962|1990
627050|2010-01-25|4|N|PRS|62624|IP|UNCLASSIFIED|UNCLASSIFIED|GREY|P|5300|2006
627058|2010-02-08|4|N|P|88480|SS|JAGUAR|S-TYPE V6 SE AUTO|BLUE|P|2967|1999
627109|2010-01-29|1|N|P|1244|CO|UNCLASSIFIED|UNCLASSIFIED|WHITE|P|125|1959
627145|2010-03-25|7|N|P|35194|LE|AUSTIN|UNCLASSIFIED|BLUE|D|0|1963
627185|2010-02-18|4|PL|P|170507|EX|VOLVO|850|MAR00N|P|2435|1997
627186|2010-02-15|4|N|F|170449|EX|VOLVO|850|MAROON|P|2435|1997
627227|2010-02-24|4|N|P|73195|NW|MERCEDES|E430 AVANTGARDE AUTO|BLACK|P|4266|2002
627242|2010-02-01|4|N|P|38225|IP|TOYOTA|HILUX INVINCIBLE D-4D A|BLACK|D|2982|2007
627280|2010-03-08|4|PR|P|44132|B|AUDI|TT QUATTRO (180 BHP)|BLACK|P|1781|2000
627281|2010-03-08|4|N|F|44132|B|AUDI|TT QUATTRO (180 BHP)|BLACK|P|1781|2000
```

- But the tests are grouped by year and do not "link" the vehicles (a problem fixed in more recent releases - at my prompting!)

Here's a trick ...

- Concatenate all files and sort by the "mystery" identifier. You get lots of blocks like this:

Here's a trick ...

- Concatenate all files and sort by the "mystery" identifier. You get lots of blocks like this:

118173532|2009-08-05|4|N|P|132299|BS|VAUXHALL|ASTRA LS 8V|WHITE|P|1598| 1999 118173533|2008-08-11|4|PR|P| $123259 \mid$ BS |VAUXHALL|ASTRA LS 8V|WHITE|P|1598|1999 118173534|2008-08-11|4|N|F|123259|BS|VAUXHALL|ASTRA LS 8V|WHITE|P|1598| 1999 118173535|2007-08-13|4|N|P|113709|BS|VAUXHALL|ASTRA LS 8V|WHITE|P|1598|1999 118173536|2006-08-18|4|N|P|105420|BS|VAUXHALL|ASTRA LS 8V|WHITE|P|1598| 1999 118173537|2005-08-26|4|N|P|99777|BS|VAUXHALL|ASTRA LS 8V|WHITE|P|1598|1999

- We can follow individuals around and infer their mileage (rate) between consecutive test dates!!!!

Here's a trick ...

- Concatenate all files and sort by the "mystery" identifier. You get lots of blocks like this:

118173532|2009-08-05|4|N|P|132299|BS|VAUXHALL|ASTRA LS 8V|WHITE|P|1598| 1999 118173533|2008-08-11|4|PR|P| 123259|BS|VAUXHALL|ASTRA LS 8V|WHITE|P|1598|1999 118173534|2008-08-11|4|N|F|123259|BS|VAUXHALL|ASTRA LS 8V|WHITE|P|1598|1999 118173535|2007-08-13|4|N|P|113709|BS|VAUXHALL|ASTRA LS 8V|WHITE|P|1598|1999 118173536|2006-08-18|4|N|P|105420|BS|VAUXHALL|ASTRA LS 8V|WHITE|P|1598|1999 118173537|2005-08-26|4|N|P|99777|BS|VAUXHALL|ASTRA LS 8V|WHITE|P|1598|1999

- We can follow individuals around and infer their mileage (rate) between consecutive test dates!!!!
- For example, in the interval from 2008-08-11 to 2009-08-05 (359 days), I drove 132,299-123,259 = 9,040* miles, at an average rate of 25.18 miles per day.

Basic analysis object: intervals and their attributes

- Re-arrange blocks of same-vehicle data into consecutive pairs of tests:

Interval	First test			Second test		
	date t_{1}	miles x_{1}	place 1	date t_{2}	miles x_{2}	place $_{2}$
1	$2005-08-26$	99777	BS	$2006-08-18$	105420	BS
2	$2006-08-18$	105420	BS	$2007-08-13$	113709	BS
3	$2007-08-13$	113709	BS	$2008-08-11$	123259	BS
4	$2008-08-11$	123259	BS	$2008-08-11$	123259	BS
5	$2008-08-11$	123259	BS	$2009-08-05$	132299	BS

- To which can be linked vehicle-specific attributes: VAUXHALL, ASTRA LS 8V, WHITE, P (fuel), 1598 (cc), 1999 (year)
- (Eg) during interval 3 - I drove at an average rate of $(123259-113709) / 364=26.24$ miles per day, but we don't know how my mileage was distributed during that period.
- These mileage rates are (more or less) complete across the vehicle population - even after cleaning.

Population level statistics: straddling rate $\bar{r}(t)$

- Select all N intervals that straddle a given observation date t^{*}
- Each interval yields an average (per vehicle) rate r_{i}.

Population level statistics: straddling rate $\bar{r}(t)$

- Straddling rate $\bar{r}\left(t^{*}\right)$ is then defined by the average average

$$
\bar{r}\left(t^{*}\right)=\frac{1}{N} \sum_{i=1}^{N} r_{i}
$$

- Select all N intervals that straddle a given observation date t^{*}
- Each interval yields an average (per vehicle) rate r_{i}.

Population level statistics: straddling rate $\bar{r}(t)$

- Select all N intervals that straddle a given observation date t^{*}
- Each interval yields an average (per vehicle) rate r_{i}.
- Straddling rate $\bar{r}\left(t^{*}\right)$ is then defined by the average average

$$
\bar{r}\left(t^{*}\right)=\frac{1}{N} \sum_{i=1}^{N} r_{i}
$$

- It is fine for annual statistics: choose $t^{*}=1 / 7 / 2007$, 1/7/2008, 1/7/2009 etc.
- But $\bar{r}\left(t^{*}\right)$ actually incorporates miles driven over the two year span $t^{*}-1 \leq t<t^{*}+1$.

Mileage distributions: new(ish) vehicles

West London vs Kirkcaldy: First registration 2004

Mileage distributions: older vehicles

Mileage distributions: even older vehicles

Mileage distributions: old vehicles

From the Straddling Rate to the Census Date Rate

- Progression of a vehicle's odometer with time

From the Straddling Rate to the Census Date Rate

- Progression of a vehicle's odometer with time - with tests

From the Straddling Rate to the Census Date Rate

- The tests do not allow you to distinguish the 2 trajectories.

From the Straddling Rate to the Census Date Rate

- Distributions derived from straddling rate suffer anomalous variance because some intervals are very short

From the Straddling Rate to the Census Date Rate

- Solution is to interpolate onto some given census dates ...

From the Straddling Rate to the Census Date Rate

- ... and use the rates between the census dates.
(Also neatly synchronises the data into calendar year comparisons.)

Five digit odometer problem

Cleaning: How to Deal with Bad Odometers

Solution 1: don't worry about it too much

Cleaning: How to Deal with Bad Odometers

Solution 1: don't worry about it too much

- Compute rates as if all odometers are perfectly correct

Cleaning: How to Deal with Bad Odometers

Solution 1: don't worry about it too much

- Compute rates as if all odometers are perfectly correct
- Reject intervals $\left(^{*}\right)$ if rates which are outside a reasonable range:
- Below 0
- Above 150 miles per day (?)

Cleaning: How to Deal with Bad Odometers

Solution 1: don't worry about it too much

- Compute rates as if all odometers are perfectly correct
- Reject intervals $\left(^{*}\right)$ if rates which are outside a reasonable range:
- Below 0
- Above 150 miles per day (?)
- Scale population statistics up for the intervals of vehicles thus discarded
(*) Nomenclature: will talk of intervals as Bad or Good.

Cleaning: How to Deal with Bad Odometers

Solution 1: don't worry about it too much

- Compute rates as if all odometers are perfectly correct
- Reject intervals $\left(^{*}\right)$ if rates which are outside a reasonable range:
- Below 0
- Above 150 miles per day (?)
- Scale population statistics up for the intervals of vehicles thus discarded
(*) Nomenclature: will talk of intervals as Bad or Good.

Solution 2: try to identify which individual odometer entries are bad and remove them instead

When two (or more) Bads make a Good

- The middle odometer entry is (probably) erroneous due to a missing digit in the data entry?

When two (or more) Bads make a Good

- The middle odometer entry is (probably) erroneous - due to a missing digit?
- The spanning interval without the middle test is (probably) ok.

Syntactic games

- Represent each vehicle's intervals as a sequence of \mathbf{B} and \mathbf{G}. For example BGGGBBGGBGG.

Syntactic games

- Represent each vehicle's intervals as a sequence of \mathbf{B} and \mathbf{G}. For example BGGGBBGGBGG.
- Try to remove tests to end up with a sequence that is all \mathbf{G}.

Syntactic games

- Represent each vehicle's intervals as a sequence of \mathbf{B} and \mathbf{G}. For example BGGGBBGGBGG.
- Try to remove tests to end up with a sequence that is all G.
- Multiple consecutive Bs should be replaced with the spanning interval which is either \mathbf{G} (problem solved) or perhaps \mathbf{B}.

Syntactic games

- Represent each vehicle's intervals as a sequence of \mathbf{B} and \mathbf{G}. For example BGGGBBGGBGG.
- Try to remove tests to end up with a sequence that is all G.
- Multiple consecutive Bs should be replaced with the spanning interval which is either \mathbf{G} (problem solved) or perhaps \mathbf{B}.
- Only remaining problem is singleton B which end of the bad interval should be removed?

Syntactic games

- Represent each vehicle's intervals as a sequence of \mathbf{B} and \mathbf{G}. For example BGGGBBGGBGG.
- Try to remove tests to end up with a sequence that is all G.
- Multiple consecutive Bs should be replaced with the spanning interval which is either \mathbf{G} (problem solved) or perhaps \mathbf{B}.
- Only remaining problem is singleton B which end of the bad interval should be removed?
- Endpoint B: delete the end test (yes, you then need infill)

Syntactic games

- Represent each vehicle's intervals as a sequence of \mathbf{B} and \mathbf{G}. For example BGGGBBGGBGG.
- Try to remove tests to end up with a sequence that is all \mathbf{G}.
- Multiple consecutive Bs should be replaced with the spanning interval which is either \mathbf{G} (problem solved) or perhaps \mathbf{B}.
- Only remaining problem is singleton B which end of the bad interval should be removed?
- Endpoint B: delete the end test (yes, you then need infill)
- Interior B: a messy mixture of clocking events; clock rollover; (mild) centrally bad cases etc.

Syntactic games

- Represent each vehicle's intervals as a sequence of \mathbf{B} and \mathbf{G}. For example BGGGBBGGBGG.
- Try to remove tests to end up with a sequence that is all G.
- Multiple consecutive Bs should be replaced with the spanning interval which is either \mathbf{G} (problem solved) or perhaps \mathbf{B}.
- Only remaining problem is singleton B which end of the bad interval should be removed?
- Endpoint B: delete the end test (yes, you then need infill)
- Interior B: a messy mixture of clocking events; clock rollover; (mild) centrally bad cases etc.
- Look at removing either or both ends so as to generate \mathbf{G}. Repeat

How to deal with multiple tests on the same day (I) (need to pare down to a single odometer reading per test day)

- We want to complete previous syntactic procedure before deciding which test to select for each date.

How to deal with multiple tests on the same day (II)

- Compute 4 rates, from the odometer pairs

$$
\left(x_{1}^{\min }, x_{2}^{\min }\right) \quad\left(x_{1}^{\max }, x_{2}^{\max }\right) \quad\left(x_{1}^{\min }, x_{2}^{\max }\right) \quad\left(x_{1}^{\max }, x_{2}^{\min }\right)
$$

How to deal with multiple tests on the same day (II)

- Compute 4 rates, from the odometer pairs

$$
\left(x_{1}^{\min }, x_{2}^{\min }\right) \quad\left(x_{1}^{\max }, x_{2}^{\max }\right) \quad\left(x_{1}^{\min }, x_{2}^{\max }\right) \quad\left(x_{1}^{\max }, x_{2}^{\min }\right)
$$

- We call the interval
- Certainly Bad, if all 4 rates are Bad
- Certainly Good, if all 4 rates are Good
- Don't know - if there is a mix

How to deal with multiple tests on the same day (II)

- Compute 4 rates, from the odometer pairs

$$
\left(x_{1}^{\min }, x_{2}^{\min }\right) \quad\left(x_{1}^{\max }, x_{2}^{\max }\right) \quad\left(x_{1}^{\min }, x_{2}^{\max }\right) \quad\left(x_{1}^{\max }, x_{2}^{\min }\right)
$$

- We call the interval
- Certainly Bad, if all 4 rates are Bad
- Certainly Good, if all 4 rates are Good
- Don't know - if there is a mix
- The D are rare - no great loss in calling them B

How to deal with multiple tests on the same day (II)

- Compute 4 rates, from the odometer pairs

$$
\left(x_{1}^{\min }, x_{2}^{\min }\right) \quad\left(x_{1}^{\max }, x_{2}^{\max }\right) \quad\left(x_{1}^{\min }, x_{2}^{\max }\right) \quad\left(x_{1}^{\max }, x_{2}^{\min }\right)
$$

- We call the interval
- Certainly Bad, if all 4 rates are Bad
- Certainly Good, if all 4 rates are Good
- Don't know - if there is a mix
- The D are rare - no great loss in calling them B
- Note: for certainly Bad: there might be a good interval if there are 3 or more distinct tests at both t_{1} and t_{2} : also rare

How to deal with multiple tests on the same day (II)

- Compute 4 rates, from the odometer pairs

$$
\left(x_{1}^{\min }, x_{2}^{\min }\right) \quad\left(x_{1}^{\max }, x_{2}^{\max }\right) \quad\left(x_{1}^{\min }, x_{2}^{\max }\right) \quad\left(x_{1}^{\max }, x_{2}^{\min }\right)
$$

- We call the interval
- Certainly Bad, if all 4 rates are Bad
- Certainly Good, if all 4 rates are Good
- Don't know - if there is a mix
- The D are rare - no great loss in calling them B
- Note: for certainly Bad: there might be a good interval if there are 3 or more distinct tests at both t_{1} and t_{2} : also rare
- Proceed with previous procedure using certainly Bad and Good.

How to deal with multiple tests on the same day (II)

- Compute 4 rates, from the odometer pairs

$$
\left(x_{1}^{\min }, x_{2}^{\min }\right) \quad\left(x_{1}^{\max }, x_{2}^{\max }\right) \quad\left(x_{1}^{\min }, x_{2}^{\max }\right) \quad\left(x_{1}^{\max }, x_{2}^{\min }\right)
$$

- We call the interval
- Certainly Bad, if all 4 rates are Bad
- Certainly Good, if all 4 rates are Good
- Don't know - if there is a mix
- The \mathbf{D} are rare - no great loss in calling them B
- Note: for certainly Bad: there might be a good interval if there are 3 or more distinct tests at both t_{1} and t_{2} : also rare
- Proceed with previous procedure using certainly Bad and Good.
- Finally - decide which odometer at each t to use at the end. (For example: the median value.)

Central Question for Remainder of Talk

Recall that I cannot possibly say anything about an individual's mileage on finer time scales than one year.

But can I derive something about population level mileage over shorter time scales - eg a month?

Central Question for Remainder of Talk

Recall that I cannot possibly say anything about an individual's mileage on finer time scales than one year.

But can I derive something about population level mileage over shorter time scales - eg a month?

Possible application: detect the sharp drop in driving in Autumn 2008 following Lehman brothers collapse.

How to compute temporal evolution of mileage rates?

How to compute temporal evolution of mileage rates?

- Erm, isn't it obvious?

How to compute temporal evolution of mileage rates?

- Erm, isn't it obvious?
- Take a given sequence $t_{i}, i=1,2, \ldots$

How to compute temporal evolution of mileage rates?

- Erm, isn't it obvious?
- Take a given sequence $t_{i}, i=1,2, \ldots$
- Compute corresponding $\bar{r}\left(t_{i}\right)$ using straddling procedure

How to compute temporal evolution of mileage rates?

- Erm, isn't it obvious?
- Take a given sequence $t_{i}, i=1,2, \ldots$
- Compute corresponding $\bar{r}\left(t_{i}\right)$ using straddling procedure
- Pairs $\left(t_{i}, \bar{r}\left(t_{i}\right)\right)$ reconstruct $\bar{r}(t)$

How to compute temporal evolution of mileage rates?

- Erm, isn't it obvious?
- Take a given sequence $t_{i}, i=1,2, \ldots$
- Compute corresponding $\bar{r}\left(t_{i}\right)$ using straddling procedure
- Pairs $\left(t_{i}, \bar{r}\left(t_{i}\right)\right)$ reconstruct $\bar{r}(t)$
- Actually ... this process is flawed... But just look what we can do with it!!!

Example of temporal evolution via straddling (WRONG)

R.E. Wilson et al (UoB)

Temporal Mileage Rates
March 25, 2015

Basic postulate: the population spot rate $\phi(t)$

- Suppose there is a population-level spot rate $\phi(t)$ that modulates all vehicles' mileage (alt. restrict to a population segment).

Basic postulate: the population spot rate $\phi(t)$

- Suppose there is a population-level spot rate $\phi(t)$ that modulates all vehicles' mileage (alt. restrict to a population segment).
- Then each vehicle i has an individual spot rate $\phi_{i}(t)$ with

$$
\phi_{i}(t)=c_{i} \phi(t)+\text { noise }
$$

Here $c_{i}=$ const.; $\left\langle c_{i}\right\rangle=1$; and \langle noise $\rangle=0$, so that $\phi=\left\langle\phi_{i}\right\rangle$.

Basic postulate: the population spot rate $\phi(t)$

- Suppose there is a population-level spot rate $\phi(t)$ that modulates all vehicles' mileage (alt. restrict to a population segment).
- Then each vehicle i has an individual spot rate $\phi_{i}(t)$ with

$$
\phi_{i}(t)=c_{i} \phi(t)+\text { noise }
$$

Here $c_{i}=$ const.; $\left\langle c_{i}\right\rangle=1$; and \langle noise $\rangle=0$, so that $\phi=\left\langle\phi_{i}\right\rangle$.

- Let $\psi_{i}(\tau)$ denote miles driven by i between tests at times $\tau-1 / 2$ and $\tau+1 / 2$. Then

$$
\psi_{i}(\tau)=\int_{\tau-1 / 2}^{\tau+1 / 2}\left(c_{i} \phi(s)+\text { noise }\right) \mathrm{d} s, \quad=c_{i} \int_{\tau-1 / 2}^{\tau+1 / 2} \phi(s) \mathrm{d} s
$$

From the spot rate to the straddling rate

- Thus by averaging over tests that straddle t :

$$
\bar{r}(t)=\int_{t-1 / 2}^{t+1 / 2}\left\langle\psi_{i}(\tau)\right\rangle_{i} \mathrm{~d} \tau=\int_{t-1 / 2}^{t+1 / 2}\left\langle c_{i}\right\rangle \int_{\tau-1 / 2}^{\tau+1 / 2} \phi(s) \mathrm{d} s \mathrm{~d} \tau
$$

From the spot rate to the straddling rate

- Thus by averaging over tests that straddle t :

$$
\bar{r}(t)=\int_{t-1 / 2}^{t+1 / 2}\left\langle\psi_{i}(\tau)\right\rangle_{i} \mathrm{~d} \tau=\int_{t-1 / 2}^{t+1 / 2}\left\langle c_{i}\right\rangle \int_{\tau-1 / 2}^{\tau+1 / 2} \phi(s) \mathrm{d} s \mathrm{~d} \tau
$$

- Simplify integral by $\left\langle c_{i}\right\rangle=1$ and reverse the order of integration

$$
\bar{r}(t)=\int_{t-1}^{t+1} w(s ; t) \phi(s) \mathrm{d} s
$$

- Thus $\phi(t)$ leads to $\bar{r}(t)$. But we want to derive $\phi(t)$ from $\bar{r}(t)$ (which is derivable from data).

From the straddling rate to the spot rate

- See TR-E 2013 for a whole bunch of Mathematics!!! - upshot:

$$
\bar{r}^{\prime \prime}(t)=\phi(t+1)-2 \phi(t)+\phi(t-1) .
$$

From the straddling rate to the spot rate

- See TR-E 2013 for a whole bunch of Mathematics!!! - upshot:

$$
\bar{r}^{\prime \prime}(t)=\phi(t+1)-2 \phi(t)+\phi(t-1) .
$$

- Isolate $\phi(t+1)$ to derive a time-stepping scheme to evolve $\phi(t)$, with a time-step Δt ($=1$ month, say)

From the straddling rate to the spot rate

- See TR-E 2013 for a whole bunch of Mathematics!!! - upshot:

$$
\bar{r}^{\prime \prime}(t)=\phi(t+1)-2 \phi(t)+\phi(t-1) .
$$

- Isolate $\phi(t+1)$ to derive a time-stepping scheme to evolve $\phi(t)$, with a time-step Δt ($=1$ month, say)
- Compute $\bar{r}(t)$ from data at a mesh of points t_{i}, and estimate $\bar{r}^{\prime \prime}(t)$ by the divided difference - a natural step size is Δt.
- in practice: $\bar{r}(t)$ is noisy, so the difference is applied to a smoothing least squares fit spline.

From the straddling rate to the spot rate

- See TR-E 2013 for a whole bunch of Mathematics!!! - upshot:

$$
\bar{r}^{\prime \prime}(t)=\phi(t+1)-2 \phi(t)+\phi(t-1) .
$$

- Isolate $\phi(t+1)$ to derive a time-stepping scheme to evolve $\phi(t)$, with a time-step Δt ($=1$ month, say)
- Compute $\bar{r}(t)$ from data at a mesh of points t_{i}, and estimate $\bar{r}^{\prime \prime}(t)$ by the divided difference - a natural step size is Δt.
- in practice: $\bar{r}(t)$ is noisy, so the difference is applied to a smoothing least squares fit spline.
- Unfortunately: 2 years of initial data for $\phi(t)$ are required - at the fine scale resolution Δt.

Refinement of the straddling rate idea

- Select only the intervals that straddle t^{*} and with right hand ends before $t^{*}+\alpha$, with $\alpha \leq 1$ year.
- Call resulting average average straddle rate $\bar{r}_{\alpha}(t)$

Refinement of the straddling rate idea

- Select only the intervals that straddle t^{*} and with right hand ends before $t^{*}+\alpha$, with $\alpha \leq 1$ year.
- Call resulting average average straddle rate $\bar{r}_{\alpha}(t)$
- Crank the handle to give:

$$
\begin{array}{r}
\bar{r}_{\alpha}^{\prime \prime}(t)=\frac{1}{\alpha}[\phi(t+\alpha)-\phi(t)] \\
-\frac{1}{\alpha}[\phi(t-1+\alpha)-\phi(t-1)]
\end{array}
$$

Refinement of the straddling rate idea

- Select only the intervals that straddle t^{*} and with right hand ends before $t^{*}+\alpha$, with $\alpha \leq 1$ year.
- Call resulting average average straddle rate $\bar{r}_{\alpha}(t)$
- Crank the handle to give:

$$
\begin{array}{r}
\bar{r}_{\alpha}^{\prime \prime}(t)=\frac{1}{\alpha}[\phi(t+\alpha)-\phi(t)] \\
-\frac{1}{\alpha}[\phi(t-1+\alpha)-\phi(t-1)]
\end{array}
$$

- Gives time-stepping scheme: but only $1+\alpha$ years of initial data required.

Refinement of the straddling rate idea

- Select only the intervals that straddle t^{*} and with right hand ends before $t^{*}+\alpha$, with $\alpha \leq 1$ year.
- Crank the handle to give:

$$
\begin{array}{r}
\bar{r}_{\alpha}^{\prime \prime}(t)=\frac{1}{\alpha}[\phi(t+\alpha)-\phi(t)] \\
-\frac{1}{\alpha}[\phi(t-1+\alpha)-\phi(t-1)]
\end{array}
$$

- Gives time-stepping scheme: but only $1+\alpha$ years of initial data required.
- So interest is in $\alpha \rightarrow 0$, which gives $\bar{r}_{\alpha}^{\prime}(t) \simeq \phi^{\prime}(t)-\phi^{\prime}(t-1)$ (natural meaning)
- Call resulting average average straddle rate $\bar{r}_{\alpha}(t)$

Refinement of the straddling rate idea

- Select only the intervals that straddle t^{*} and with right hand ends before $t^{*}+\alpha$, with $\alpha \leq 1$ year.
- Call resulting average average straddle rate $\bar{r}_{\alpha}(t)$
- Crank the handle to give:

$$
\begin{array}{r}
\bar{r}_{\alpha}^{\prime \prime}(t)=\frac{1}{\alpha}[\phi(t+\alpha)-\phi(t)] \\
-\frac{1}{\alpha}[\phi(t-1+\alpha)-\phi(t-1)]
\end{array}
$$

- Gives time-stepping scheme: but only $1+\alpha$ years of initial data required.
- So interest is in $\alpha \rightarrow 0$, which gives $\bar{r}_{\alpha}^{\prime}(t) \simeq \phi^{\prime}(t)-\phi^{\prime}(t-1)$ (natural meaning)
- $\alpha \rightarrow 0$ means fewer and fewer intervals, means noisy $\bar{r}_{\alpha}(t)$

Synthetic data set-up

- Choose spot rate

$$
\phi(t)=8000+500 t-1000 \cos 2 \pi t
$$

$$
-1000[t-2]_{+}(t-2)^{2}
$$

- 10^{6} vehicles with tests 1 year apart, test dates uniformly distributed through calendar year
- Vehicle i daily mileage drawn from a distribution modulated
 by $\phi(t)$ and (random) c_{i}.
- Odometer readings on test dates are synthesised by adding individual vehicle daily totals
- Periodic component in spot rate $\phi(t)$ is suppressed in straddling rates $\bar{r}_{\alpha}(t)$

Results with synthetic data: $\alpha=\Delta t=0.1$ years

- Reconstructed $\phi(t)$ almost indistinguishable from ground truth.

Straddling rates $\bar{r}_{\alpha}(t)$ for real-world data

- Seasonal component shouldn't be there: underlying assumptions of the theory are broken
R.E. Wilson et al (UoB)

Implicit assumptions in the theory. . .

A1 We assume that tests (odometer readings) are exactly one year apart.

Implicit assumptions in the theory. . .

A1 We assume that tests (odometer readings) are exactly one year apart.

- OKish - theory can be generalised.

Implicit assumptions in the theory...

A1 We assume that tests (odometer readings) are exactly one year apart.

- OKish - theory can be generalised.
- In fact - marginal failure of this assumption can be used to quantify seasonal variation.

Implicit assumptions in the theory...

A1 We assume that tests (odometer readings) are exactly one year apart.

- OKish - theory can be generalised.
- In fact - marginal failure of this assumption can be used to quantify seasonal variation.

A2 We assume that tests occur at same frequency on average throughout year.

Implicit assumptions in the theory...

A1 We assume that tests (odometer readings) are exactly one year apart.

- OKish - theory can be generalised.
- In fact - marginal failure of this assumption can be used to quantify seasonal variation.

A2 We assume that tests occur at same frequency on average throughout year.

- Not true - but easy to fix theory.

Implicit assumptions in the theory...

A1 We assume that tests (odometer readings) are exactly one year apart.

- OKish - theory can be generalised.
- In fact - marginal failure of this assumption can be used to quantify seasonal variation.

A2 We assume that tests occur at same frequency on average throughout year.

- Not true - but easy to fix theory.

A3 We assume that a vehicle's mileage rate is independent of the time of year of at which it is tested (and its odometer is read).

Implicit assumptions in the theory...

A1 We assume that tests (odometer readings) are exactly one year apart.

- OKish - theory can be generalised.
- In fact - marginal failure of this assumption can be used to quantify seasonal variation.

A2 We assume that tests occur at same frequency on average throughout year.

- Not true - but easy to fix theory.

A3 We assume that a vehicle's mileage rate is independent of the time of year of at which it is tested (and its odometer is read).

- Completely wrong. And very hard to fix.

On A3: fails because a pattern in new vehicle registrations throughout the year (in the UK).

Conclusions and Further Work (I)

- Incidental data is beautiful! (and useful and cheap)

Conclusions and Further Work (I)

- Incidental data is beautiful! (and useful and cheap)
- (Inadvertently) the MOT set provides vehicle usage data - not intentioned by its release - which is not available elsewhere

Conclusions and Further Work (I)

- Incidental data is beautiful! (and useful and cheap)
- (Inadvertently) the MOT set provides vehicle usage data - not intentioned by its release - which is not available elsewhere (at least in this quantity and detail)

Conclusions and Further Work (I)

- Incidental data is beautiful! (and useful and cheap)
- (Inadvertently) the MOT set provides vehicle usage data - not intentioned by its release - which is not available elsewhere (at least in this quantity and detail)
- Other data sources might enable huge extensions:

1. Per vehicle emissions data
2. Fine scale data (month?) for point of first use
3. Fine scale location data (LLSOA of registered keepers?)
4. Link vehicles with same registered keeper / address

Conclusions and Further Work (II)

- Methods developed which extract population-level spot rate mileage from widely spaced individual vehicle odometer readings. Success with synthetic data.

Conclusions and Further Work (II)

- Methods developed which extract population-level spot rate mileage from widely spaced individual vehicle odometer readings. Success with synthetic data.
- UK MOT data set: some fixes/patches to theory are needed.

Conclusions and Further Work (II)

- Methods developed which extract population-level spot rate mileage from widely spaced individual vehicle odometer readings. Success with synthetic data.
- UK MOT data set: some fixes/patches to theory are needed.
- Please contact me if you know of other datasets (international) in which odometer readings are systematically collected.
- These methods have the potential to complement / replace existing survey-based / link-flow techniques for estimating population-level mileage.

