Beauty and the Body of the Beholder: Raters’ BMI Has Only Limited Association with Ratings of Attractiveness of the Opposite Sex

Guanlin Wang1,2,3, Chima A. Ekeleme-Egedigwe4, Asmaa El Hamdouchi5, Justina Sauciuvenaitė3, Ruth Bisland3, Kurosh Djafarian6, Robert Ojiambo7, Harris Ramuth8, Sandra Holasek9, Sonja Lackner9, Adama Diop of Dakar, Dakar, Senegal11, Department of Biology, Mount Holyoke College, South Hadley, Massachusetts, USA12, Department of Sports Medicine, Stephen F. Austin State University, Nacogdoches, Texas, USA13, Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa14, Family and Community Health Unit, Texas A&M AgriLife Extension Service, College Station, Texas, USA15, Department of Humanities in Medicine, College of Medicine, Texas A&M Health Science Center, Texas A&M University, Bryan, Texas, USA.

Objective: Assortative mating for adiposity increases the genetic burden on offspring, but its causes remain unclear. One hypothesis is that people who have high adiposity find other people with obesity more physically attractive than lean people.

Methods: The attractiveness of sets of images of males and females who varied in adiposity were rated by opposite sex subjects (559 males and 340 females) across 12 countries.

Results: There was tremendous individual variability in attractiveness ratings. For female attractiveness, most males favored the leanest subjects, but others favored intermediate fatness, some were indifferent to body composition, and others rated the subjects with obesity as most attractive. For male images rated by females, the patterns were more complex. Most females favored subjects with low levels of adiposity (but not the lowest level), whereas others were indifferent to body fatness or rated the images depicting individuals with obesity as the most attractive. These patterns were unrelated to rater BMI. Among Caucasian males who rated the images of the thinnest females as being more attractive, the magnitude of the effect depended on rater BMI, indicating limited “mutual attraction.”

Conclusions: Individual variations in ratings of physical attractiveness were broadly unrelated to rater BMI and suggest that mutual attraction is an unlikely explanation for assortative mating for obesity.

Introduction

Twin studies suggest that genetics explains 65% to 70% of the variance in obesity (1,2). Assortative mating occurs when individuals in a population do not mate randomly with respect to a given trait and is known to occur for body weight/adiposity (3-10). Therefore, assortative mating may be a contributing factor to the obesity epidemic. However, the causes of assortative mating for adiposity

1 State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
Correspondence: John R. Speakman (j.speakman@abdn.ac.uk)2 University of Chinese Academy of Sciences, Beijing, China 3 Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK 4 Department of Chemistry/Biochemistry and Molecular Biology, Faculty of Science, Federal University Ndufu Alike Ikwo, Abakaliki, Ebonyi State, Nigeria 5 National Energy Center of Nuclear Science and Technology (CNESTEN), Joint Research Unit of Nutrition and Food, CNESTEN–Ibn Tofail University, Rabat, Morocco 6 Department of Clinical Nutrition, Tehran University of Medical Sciences, Tehran, Iran 7 Medical Physiology Department, College of Health Science, School of Medicine, Moi University, Eldoret, Kenya 8 Biochemistry Department, Central Health Laboratory Services, Ministry of Health and Quality of Life, Port Louis, Mauritius 9 Center of Molecular Medicine, Institute of Pathophysiology and Immunology, Medical University Graz, Graz, Austria 10 Laboratory of Nutrition, Department of Animal Biology, Faculty of Sciences and Technology, University Cheikh Anta Diop of Dakar, Dakar, Senegal 11 Department of Biology, Mount Holyoke College, South Hadley, Massachusetts, USA 12 Department of Sports Medicine, Stephen F. Austin State University, Nacogdoches, Texas, USA 13 Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa 14 Family and Community Health Unit, Texas A&M AgriLife Extension Service, College Station, Texas, USA 15 Department of Humanities in Medicine, College of Medicine, Texas A&M Health Science Center, Texas A&M University, Bryan, Texas, USA.

See Commentary. pg. 461.

Funding agencies: This work was supported by National Natural Science Foundation of China (NSFC grant 91431102) and the International Cooperation Program of Chinese Academy of Sciences (GJHZ1660). JRS was supported by the Thousand Talents Program of the Chinese government and a Wolfson Research Merit Award from the Royal Society. GW was awarded the UCAS-UoA dual-degree PhD training Program from University of Chinese Academy of Sciences and University of Aberdeen.

Disclosure: The authors declared no conflict of interests.

Author contributions: JRS conceived and designed the project. GW, CAE, AEH, JS, RB, KD, RO, HR, SH, SL, AD, CH, LW, MC, MH, HSK, and TS recruited volunteers and collected and quality controlled the data from each local site. MDF provided the images and advice on project execution. GW and JRS wrote the manuscript. All authors read and finalized the manuscript.

Additional Supporting Information may be found in the online version of this article.

Received: 15 August 2017; Accepted: 13 November 2017; Published online 21 February 2018. doi:10.1002/oby.22092
remain unclear. It is probably not because fatness is associated with other factors such as age or poverty, which are themselves subject to assortative mating (8). Moreover, it is not because individuals converge in body composition after marriage because of shared lifestyles (reviewed in Wilson (11)).

Many studies have established that, on average, people regard leaner females and males as more attractive (12-21). Despite these overall trends at the population level, individuals may have different preferences. The “mutual attraction” hypothesis suggests that people with obesity may find other people with obesity more physically attractive and, hence, they are more likely to form partnerships.

Alternatively, the “shared lifestyle” hypothesis suggests that people at different levels of adiposity may share lifestyles that bring them together. A third idea is that although individuals may regard the leanest people as the most attractive, they may choose as a lifetime partner an individual with adiposity closer to their own (22) to reduce infidelity risk. This idea is called “fidelity insurance” or “attractiveness matching.” Finally, there could be a time element, whereby the most attractive (lean) individuals mate first. Hence, the pool of available partners will contain an increasing percentage of people with obesity. Supporting this idea, adolescents with greater body weight are less likely to be dating (23), and adults with obesity at age 18 are half as likely to be married at age 40 (24). Here, we aimed to test the mutual attraction hypothesis by studying how ratings of physical attractiveness of a series of opposite sex images varied among individuals with variable levels of obesity.

Methods

Twenty-one female and fifteen male dual-energy x-ray absorptiometry soft body images, which varied in their depictions of body fatness and waist-to-hip ratio (WHR) in the female images and in shoulder-to-waist (SWR) ratio in the male images, were used (Supporting Information Figure S1). The female images had been used previously to explore the associations of body shape with physical attractiveness (13,18). A total of 559 male raters of self-identified African (Kenya, Nigeria, Morocco, South Africa, and United States), Asian (China, Iran, and Mauritius), and Caucasian (Austria, Lithuania, United Kingdom, and United States) origin and 340 female subjects of self-identified African (Nigeria, Morocco, Senegal, and United States), Asian (China), and Caucasian (Lithuania, United Kingdom, and United States) origin were included. The overall study was approved by the institutional review board of the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (IGDB-2013-IRB-005). In addition, local ethical approval in the United Kingdom was obtained at the University of Aberdeen (CERB/2014/12/1123) and in South Africa at the North-West University, Potchefstroom (NWU-00029-16-S1). All participants gave informed consent. This project has been registered with the Open Science Framework (doi:10.17605/OSF.IO/YJP2V).

All ratings were obtained through face-to-face interview. Raters were asked for some demographic information (age, sex, self-reported ethnicity, height, and weight). Self-reported height and weight are generally highly correlated with actual height and weight but lead to a consistent underestimation of BMI by 0.7 to 1.3 kg/m². Therefore, the absolute BMI of raters may be inaccurate, but relative BMI was probably unaffected (25-27).

After recording demographic data, the male raters were given 21 shuffled female image cards and the female raters were given 15 shuffled male image cards. Raters were then instructed to reorder the cards from the most attractive on their right to the least attractive on their left. A standard score for female attractiveness followed the formula $a_n = 1 + (n-1) \times 0.4$ (in which “n” was the rank order of the image from the least attractive to the most attractive; that is, the “n” of the least attractive image was 1, so the score was $a_1 = 1 + (1-1) \times 0.4 = 1$, and the most attractive image was 21, so the score was $a_{21} = 1 + (21-1) \times 0.4 = 9$. The standard score for the male images followed the formula $a_n = 1 + (n-1) \times 4/7$.

Data were analyzed by using R (R Foundation, Vienna, Austria). The ratings of attractiveness followed different patterns among the individual raters. To characterize these patterns with a view to then evaluating how the patterns were related to the raters’ levels of adiposity, we fitted least squares fit regressions to the individual relationships between ratings of attractiveness and body fat percentage. We then added higher-order polynomials to the predictive equations to see whether significant amounts of additional variability could be explained. For almost all the raters of the female images, higher-order polynomials did not improve the fit, but in 20 individuals, the second-order polynomial provided the best fit. For the male images rated by females, third-order polynomial regressions generally provided the best fit to the data. These different fitted models allowed us to categorize the raters’ responses by using the coefficients and r^2 of these relationships. We were then able to establish whether particular patterns were associated with differences in the rater BMIs. We did this in two ways. First, we counted the number of raters of each type in each population and used the Fisher exact test to analyze whether there was any association between rater BMI and rater type. Second, we tested whether there were significant differences in rater BMI among the different rater types in the different populations by using one-way analysis of variance (ANOVA). Finally, we explored whether the coefficients of the attractiveness equations were associated with rater BMI by using least squares linear regression. This allowed us to evaluate exactly how rater BMI impacted the pattern of their ratings.

Results

Overall patterns

Overall, for males rating females, there was a negative relationship between attractiveness and body fatness (Figure 1, Supporting Information Figure S2). For females rating males, the overall pattern showed a peaked shape, with the lowest and highest levels of fatness both being less attractive (Figure 1, Supporting Information Figure S2). There was nevertheless tremendous variability in the ratings of attractiveness given to any particular image. The question we are asking is whether the individual variations in ratings of attractiveness can be linked to differences in the levels of rater adiposity (BMI). To do this, we first identified several different patterns in the ratings. We then asked how these patterns were related to the rater BMIs.

Males rating female attractiveness

We identified four different patterns in the ratings of the female images (Figure 2). Some male raters conformed closely with the
overall perspective that thinner females were most attractive (type 1). Second, some preferred intermediate levels of body fatness (type 2). Some individuals were indifferent to the body fatness (type 3) and, finally, some favored the images of people with greater adiposity (type 4). We classified each rater according to the pattern he showed by using objective criteria based on the fitted regression of his rating data to the image body fatness. We fitted regressions to the plots of body fat percentage against the ratings data and included in the type 1 group only those in which the relationship was significant ($P < 0.05$) and the slope was negative. Similarly, pattern type 4 consisted of individuals who showed a significant linear positive relationship ($P < 0.05$). To separate pattern types 2 and 3, we attempted to fit a two-term polynomial regression to the data for each individual. For those with pattern type 2, there was a significant fit to this regression model ($P < 0.05$). If we could not fit such a regression, then the pattern was deemed to be type 3. As was expected in all three populations, the most common pattern was type 1 (lean most attractive) (Table 1). This type comprised 79.1% of the Africans, 96.9% of the Asians, and 94.4% of the Caucasians. The type 2 pattern (preference for intermediate adiposity) occurred in 5.4% of Africans, 1.0% of Asians, and 2.8% of Caucasians. Type 3 (indifferent) occurred in 11.8% of Africans, 2.1% of Asians, and 2.8% of Caucasians. Finally, type 4 was only observed in Africans, in whom it made up 3.7% of raters. The relative proportions of the different patterns were significantly different among populations ($P = 2.371e-07$, Fisher exact test).

To explore whether there was a relationship between rater BMI and the individual attractiveness patterns, we tested whether there were differences among rater BMIs of different patterns. There were no significant differences in rater BMI among the four different types of response in African and Asian populations, but there was a significant difference between Caucasians and the other groups (one-way ANOVA, female: Africans, $F_{3,292} = 0.99$, $P = 0.398$; Asians, $F_{2,191} = 1.77$, $P = 0.173$; Caucasians, $F_{2,68} = 3.39$, $P = 0.04$). The type 1 rater BMI was lower than that of the other groups.

To further explore the links between rater BMI and the exact patterns, we investigated whether there was a relationship between the slopes and intercepts of the negative relationships among attractiveness ratings, the body fat percentages of the people in the images (for those conforming to pattern 1), and the BMI of the raters (Figure 3). For the African (Figure 3A-3B) and Asian (Figure 3C-3D) populations, there were no relationships (regression: Africans $r^2 = 0.007$, $F_{1,120} = 1.54$, $P = 0.215$; Asians $r^2 = 7.545e-06$, $F_{1,183} = 0.001$, $P = 0.970$). However, for Caucasians, there was a significant positive relationship.
between the slope (and intercept) of the regression linking attractiveness to body fat percentage and rater BMI (Figure 3E-3F) (regression: $r^2 = 0.129$, $F_{1,64} = 9.367$, $P = 0.0032$). We used the regressions to model the consequences of these relationships for the ratings of attractiveness of the images with the highest and lowest levels of adiposity. A male rater with a BMI of 18 would rate attractiveness of the leanest image with a body fat of 18% as an 8.35 (out of a possible 9), whereas a male rater with a BMI of 34 would rate the same image as a 7.6. In contrast, for the image of a person with the highest adiposity, with a body fat of 50%, the rater with a BMI of 18 would give a score of 1.22 (lowest possible score = 1.0), whereas a rater with a BMI of 34 would score the image as a 2.05. Males with a higher BMI therefore had a less extreme polarization in the attractiveness ratings between the images of people who had the lowest and highest levels of adiposity. For raters who were indifferent to adiposity (pattern 3 in female images), we examined whether the raters were using the WHRs to judge attractiveness. In this group, there was a significant relationship between the WHR and the average ratings of attractiveness ($r^2 = 0.27$, $F_{1,20} = 6.97$, $P = 0.016$, Supporting Information Figure S3). At the individual level, 12 out of 41 individual raters demonstrated a significant relationship between WHR and attractiveness score. Eleven of these relationships were negative, indicating that they rated lower WHR as more attractive. Twenty-nine individuals seemed indifferent to both adiposity and WHR.

TABLE 1 Number of individual males of four types rating images of female attractiveness

<table>
<thead>
<tr>
<th>Type</th>
<th>Type 1</th>
<th>Type 2</th>
<th>Type 3</th>
<th>Type 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>African</td>
<td>234</td>
<td>16</td>
<td>35</td>
<td>11</td>
</tr>
<tr>
<td>Asian</td>
<td>186</td>
<td>2</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Caucasian</td>
<td>67</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>487</td>
<td>20</td>
<td>41</td>
<td>11</td>
</tr>
</tbody>
</table>

Figure 2 Examples of four types of relationship between body fat percentage and the rating score in female attractiveness. (A) Type 1 represented the standard negative relationship between body fat percentage of the image and the rating score. (B) Type 2 showed a “peaked” relationship with maximal attractiveness at intermediate levels of body fatness. (C) Type 3 showed an indifferent pattern between body fatness and rating, and (D) type 4 was the reverse trend in which high body fat percentage had a higher attractiveness rating. [Color figure can be viewed at wileyonlinelibrary.com]

Females rating male attractiveness

As with males rating female images, our analysis strategy for females rating male images was to first identify individual patterns in the different responses and to then ask whether such patterns were related to the rater BMI. We then explored in more detail whether rater BMI was linked to the coefficients of the fitted regression models.
We identified six different patterns in the ratings by females of the attractiveness of the images of males (Figure 4). These were classified by using the parameters of the fitted third-order polynomial regression between attractiveness and body fat percentage. The first pattern (type 1, Figure 4A) consisted of a single peak centered to the left of the distribution of body fat percentage, which started to turn upward at high body fat percentage values. The second pattern (type 2, Figure 4B) involved a single peak, which varied in position and was distinguished from type 1 by the fact that there was no evidence of any upturn on the right-hand side. Type 3 (Figure 4C) involved a linear negative relationship. Type 4 (Figure 4D) showed no overall upward or downward trend. In many cases, the response was effectively flat. Type 5 (Figure 4E) had an overall rising pattern with a single peak or trough. Type 6 (Figure 4F) showed an overall downward trend with a single trough at higher body fatness. In all three populations, type 1 and type 2 were the most abundant patterns (Table 2). Together, they comprised 68.2% of Africans, 94.7% of Asians, and 75.5% of Caucasians. The type 3 pattern (linear negative) was observed in 9.1% of Africans, 2.6% of Asians, and 11.8% of Caucasians. The type 4 pattern (indifferent) occurred in 19.5% of Africans, 2.6% of Asians, and 10% of Caucasians. The type 5 pattern (overall upward trend finding the images depicting the greatest adiposity most attractive) occurred in 2.6% of Africans, 0% of Asians, and 2.7% of Caucasians. Finally, the type 6 (overall negative trend) was only observed in Africans (0.6% of raters). The relative proportions of the different patterns were significantly different by a large margin among the three populations ($P = 3.131e-05$, Fisher exact test, Table 2).

These types were part of a continuum, which was most obvious when we located the different categories on plots of the relationships among the different coefficients of the fitted third-order polynomial regressions (Figure 5). The individual types mapped onto distinct areas of the coefficient plots. We now consider the frequencies of these different patterns in the different populations and whether they were associated with rater BMI. There were no significant differences in female rater BMI among the six different types of response (Africans, $F_{5,153} = 1.23$, $P = 0.296$; Asians, $F_{3,74} = 0.57$, $P = 0.634$; Caucasians, $F_{4,109} = 1.88$, $P = 0.120$). There were no significant relationships between rater BMI and the regression coefficients (Figure 6).

As with the analysis for males rating female images, we explored whether females who were indifferent to adiposity were perhaps using some other cue to rate attractiveness. For the 43 female raters indifferent to adiposity, there was no relationship between male attractiveness and SWR (type 4, $r^2 = 0.0004$, $F_{1,14} = 0.0048$, $P = 0.946$, Supporting Information Figure S3).
Discussion

The primary aim of this work was to assess whether ratings of attractiveness of the opposite sex depend on the rater’s own BMI and to assess whether this mutual attraction might be an explanation for the phenomenon of assortative mating for adiposity. By using the same set of female images, we have previously shown a strong negative linear relationship between the image body fat percentage and the average rating of physical attractiveness (13,18). Absent from our previous work was an analysis of the variability of individual raters. Here we showed large individual differences in all populations. For female attractiveness, most male raters conformed to the overall average pattern, but some showed a preference for intermediate levels of fatness and some were indifferent to adiposity, whereas some favored subjects with obesity. For male attractiveness, most female raters conformed to an average trend showing a peaked relationship between males’ body fatness and attractiveness. However, some females were indifferent to body fatness and some chose the images with higher body fatness as more attractive. The take-home message for both males and females is that, regardless of obesity level, everyone is physically beautiful to someone of the opposite sex.

A key question was whether individual raters who deviated from the average pattern had high BMIs themselves. This is important in the context of assortative mating for body composition. If raters with obesity rate images of people with obesity as more attractive, this would support the mutual attraction hypothesis. We found little evidence to support this suggestion. However, for male Caucasian raters who rated the leanest subjects as most attractive, we found a significant effect of rater BMI on their perceptions of female attractiveness. Because Caucasian males with higher BMIs on average rated images of thinner subjects slightly lower and images of individuals with obesity slightly higher, this provides some limited support for the mutual attraction hypothesis. However, the effect was small and on its own would be unlikely to generate assortative mating for adiposity. A previous study (28) also suggested that ratings of physical attractiveness were influenced by rater body composition in Caucasians. There were, however, several differences between our study and this earlier work. First, the authors of the other work studied the ratings by females of female images. Second, 30% of the raters had eating disorders and extremely low BMIs. These earlier data therefore probably reflect a different phenomenon.

We did not observe any evidence to support the mutual attraction theory with respect to female raters of male images. Another study

![Figure 4](wileyonlinelibrary.com)

Figure 4 Examples of six types of relationships between body fat percentage and the rating score in male attractiveness. (A) Type 1 consisted of a single peak centered to the left of the distribution body fat percentage, which started to turn upward at high body fat percentage values. (B) Type 2 involved a single peak distinguished from type 1 by the fact there was no evidence of any upturn on the right-hand side of the curve. (C) Type 3 involved a linear negative relationship. (D) Type 4 showed a peak then a trough, or a trough then a peak, but no overall upward or downward trend. (E) Type 5 had an overall rising pattern with a single peak or trough. (F) Type 6 showed an overall downward trend with a single trough at higher body fatness. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Number of individual females of six types rating images of male attractiveness

<table>
<thead>
<tr>
<th>Type</th>
<th>African</th>
<th>Asian</th>
<th>Caucasian</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>72</td>
<td>63</td>
<td>63</td>
<td>198</td>
</tr>
<tr>
<td>Type 2</td>
<td>33</td>
<td>9</td>
<td>20</td>
<td>62</td>
</tr>
<tr>
<td>Type 3</td>
<td>14</td>
<td>2</td>
<td>13</td>
<td>29</td>
</tr>
<tr>
<td>Type 4</td>
<td>30</td>
<td>2</td>
<td>11</td>
<td>43</td>
</tr>
<tr>
<td>Type 5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Type 6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
used a different protocol to explore the influence of female body morphology on mate preferences and found that females with a lower BMI and WHR found resources in males to be the most important factor driving attractiveness. In contrast, those females with higher WHR (but not BMI) were more influenced by male physical features (29). Similarly, in our study, female raters with a higher BMI did not rate males with obesity as more attractive.

Although our data did not support the mutual attraction hypothesis, the data raise several issues in relation to the evolutionary context of the relationship between attractiveness and adiposity. In the remainder of this discussion, we will highlight these issues. An important question is why the individual ratings in relation to adiposity were so diverse. We previously built an evolutionary model for the impacts of body fatness on female survival and fecundity (18). This model suggested maximal fitness at female BMIs of 17 to 20. This corresponds to the position of rated maximal attractiveness in many populations (12-18). The fitness function is relatively flat around the maximum and, hence, there is little difference between the average fitness of a female with a BMI of 19 and one with a BMI of 23. Individual attractiveness ratings at the lower end of the BMI distribution might then be expected to be more diverse than at the high end, since there is a large fitness difference between a female with a BMI in the range of 17 to 23 and one with a BMI of 35. This was, however, not the case, and the variance in the ratings of the images was similar across the BMI range (Figure 1).

For males, the link between adiposity and fitness (survival and fecundity) is less clear and, hence, deriving expectations from an evolutionary perspective more difficult. Nevertheless, males do have a U-shaped relationship between all-cause mortality (inverse of survival) and BMI (30,31). Hence, if we ignore the unknown impact of male adiposity on fecundity, one would expect a peaked function between attractiveness and adiposity centered at a BMI of 23 to 25. This seems to better match the most frequently observed pattern, suggesting that female ratings of attractiveness may be more adaptive than those of males (18). Nevertheless, many females in all populations deviated significantly from this pattern.
Particularly hard to understand from these evolutionary perspectives is why some individuals (of both sexes) were indifferent to cues of body fatness, with some considering the images of subjects with obesity, and hence lower fitness, as more attractive. In terms of evolutionary fitness, it is better for an individual to have a mate, and reproduce, than not. Decisions about whom to attempt to mate with are, to an extent, independent of the most attractive potential partner. Individuals of both sexes may routinely pursue, and ultimately mate with, partners whom they do not consider the most attractive. This is because, due to their own levels of attractiveness, the most attractive individuals of the opposite sex would be unlikely to accept them as partners (attractiveness matching (32)). Ultimately, it is better to have somebody than nobody. However, in this latter scenario the ratings of physical attractiveness in relation to putative fitness are unaffected (33). Individuals who pursue and mate with individuals who are not the most attractive simply accept less than “the best” to achieve a nonnegative result. Supporting this viewpoint, men with a higher BMI are less likely to approach women whom they rate as “attractive” (34).

Why some individuals are indifferent to adiposity, or even perceive the less-fit alternative as most attractive, is unclear. For female attractiveness, 12 of 41 males who were indifferent to adiposity (pattern 3) used WHR to judge attractiveness. There has been a long debate about the relative importance of body fatness and WHR as indicators of female attractiveness. Body features may indicate reproductive values (35). In the 1990s, it was suggested that WHR is the main driver of attractiveness (36). This view was challenged when it was shown that adiposity explains more of the variance in attractiveness than WHR (12,14-17,32). The present work shows that this is probably because the majority of the male population used adiposity as a key signal (18). However, a small percentage based their ratings on WHR and were indifferent to adiposity. In practice, WHR and adiposity covary, so someone using WHR as a marker of attractiveness would indirectly maximize fitness in their ratings. In contrast to the males, we did not find that any of the 43 females who were indifferent to adiposity were using SWR to gauge attractiveness.

These factors cannot, however, explain why some individual raters found the subjects with obesity more attractive than the lean ones. One hypothesis might be that, in some situations, obesity may be a proxy for wealth (38,39). This association is well established in undeveloped countries preceding the economic transition. Some evidence suggests that this association is stronger in females rating males (40,41), and hence we might anticipate a greater proportion of females rating males to show this trend. However, 11 of 559 (2%) males rated females with obesity as most attractive and 7 of 340 (2%) females rated males with obesity as most attractive (Pearson $\chi^2 = 0.009, P = 0.925$). So this result remains an enigma.

In summary, individual variations in ratings of physical attractiveness are large. There was little support for the idea of mutual attraction as a driver for assortative mating. Our data suggest that despite overall trends favoring leaner phenotypes of both sexes as most attractive, everyone is beautiful to somebody of the opposite sex.

Acknowledgments

We are grateful for the support of all the volunteers who participated in our study. We also thank Phil Stanforth and Julie Drake at the Fitness Institute of Texas at the University of Texas at Austin for their assistance in providing the dual-energy x-ray absorptiometry images and their data. We are also grateful to all the members of the Molecular Energetics Group from the Institute of Genetics and Developmental Biology.
References

