# Title: OPTIMAL ENERGY MIX FOR ELECTRICITY GENERATION IN NIGERIA

# Name: DORIS ADAOBI OKEKE

## **RESEARCH BACKGROUND**

- Global warming has become an increasing concern in the 21st century as a result of rising CO<sub>2</sub> emissions.
- The energy sector is the highest contributor.
- The world now faces the trilemma of ensuring energy supply at an affordable rate while reducing  $CO_2$  emissions.
- Investments into renewables and carbon capture and storage (CCS) have been proposed.
- However, developing countries like Nigeria also face severe energy crisis.
- Despite her vast energy resources, 45% of the general population and >75% of rural population lack access to electricity.
- Previous theoretical research suggest a lack of proper energy mix as a reason for the electricity crisis.



# **RESEARCH OBJECTIVES**

- This research seeks to choose a teasible combination of energy resources to minimise the cost of electricity generation while meeting electricity demand, but also addressing the environmental and renewable targets set by the government.
- It also explores the possibility of integrating CCS in the energy mix for electric power generation in in Nigeria.

Objective function: Total generation cost (includes investment, O&M, fuel and  $CO_2$  emissions costs.

Constraints: i) Demand, ii) installable capacity for energy sources, iii) government plan for renewables (36% of electricity generated) & coal (2200 MW) by 2030, and iv) target for emissions reduction.

# Table 1: Description of Madela

| Table T. Description of Models |                                                    |                                                    |  |  |  |  |
|--------------------------------|----------------------------------------------------|----------------------------------------------------|--|--|--|--|
| Model                          | Scenario 1:                                        | Scenario 2:                                        |  |  |  |  |
| Name                           | Without CO <sub>2</sub> restrictions               | With CO <sub>2</sub> restrictions                  |  |  |  |  |
| Model 1                        | Base case model                                    |                                                    |  |  |  |  |
| Model 2                        | Base case plus CO <sub>2</sub> cost                |                                                    |  |  |  |  |
| Model 3                        | Base case plus CO <sub>2</sub> cost and government |                                                    |  |  |  |  |
|                                | planning for RES                                   |                                                    |  |  |  |  |
| Model 4                        | Base case plus CO <sub>2</sub> cost, government    |                                                    |  |  |  |  |
|                                | planning for RES and CCS                           |                                                    |  |  |  |  |
| Model 5                        |                                                    | Base case model                                    |  |  |  |  |
| Model 6                        |                                                    | Base case plus CO <sub>2</sub> cost                |  |  |  |  |
| Model 7                        |                                                    | Base case plus CO <sub>2</sub> cost and government |  |  |  |  |
|                                |                                                    | planning for RES                                   |  |  |  |  |
| Model 8                        |                                                    | Base case plus CO <sub>2</sub> cost, government    |  |  |  |  |
|                                |                                                    | planning for RES and CCS                           |  |  |  |  |

included  $UU_2$  restrictions.

- - •

Without Model 3

Doris Adaobi Okeke d.okeke.21@abdn.ac.uk www.abdn.ac.uk University of Aberdeen, King's College, Aberdeen, AB24 3FX

Models with CCS had lower  $CO_2$  emissions.

From all 8 models, the best mix is Model 8 – Base case plus all restrictions and CCS:

- With a total generating capacity of 90,593MW and
- LCOE of \$83.74/MWh

### Table 2: Total Emissions Generated

| Without CCS      |                  | With CCS         |                  |  |
|------------------|------------------|------------------|------------------|--|
| Model 3          | Model 7          | Model 4          | Model 8          |  |
| 3,714,324,600.44 | 2,282,030,615.57 | 1,770,075,572.39 | 1,604,684,540.26 |  |
|                  |                  |                  |                  |  |

|  | Gas |  |
|--|-----|--|
|  |     |  |
|  |     |  |



## CONCLUSION

- requirements:

  - - capacity.





### Cost Distribution for Optimised Models (in \$billion)

To achieve an electricity generation mix that meets demand at an affordable rate and achieves the emission goals and government

No new gas plants should be installed.

Hydro resources should be installed to their full potential

More investments should be made in solar.

The intended coal power plants should be fitted with CCS to reduce the  $CO_2$  emission rate.

Nuclear energy should also be included to the mix.