
TRADING VOLUME AND CRUDE OIL MARKET EFFICIENCY Name: QIHUI XU

MOTIVATIONS

- Trading volume and price relationship suggests whether technical or fundamental analysis should be used in developing trading strategies.
- It also help to explain the informational efficiency of the futures market.
- Examine whether information regarding trading volume contributes to forecasting the future price in the market.

Efficient market hypothesis states that markets utilize all available information instantaneously and reflect it correctly, making abnormal returns impossible while trading on available information.

METHODOLOGY

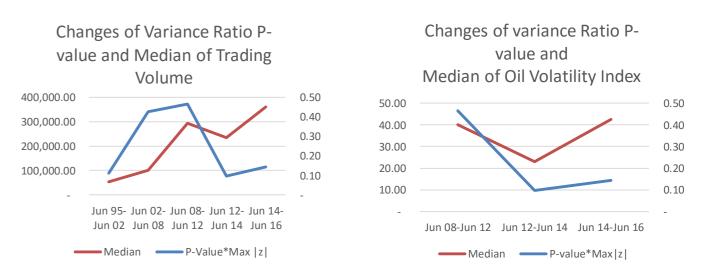
- ➤ Unit root test is a necessary condition for random walk process. If the proposition is not satisfied, we can infer that the random walk hypothesis does not true, that is, the oil futures market is not a weak form efficiency market. If the proposition is satisfied, carry on the variance ratio test.
- ► Variance-ratio test VR (q) = $\frac{\delta^2(q)}{\delta^2(1)}$, Where $\delta^2(q)$ is 1/q the variance of the q-differences and $\delta^2(1)$ is the variance of the first differences. A unit variance ratio should be represented by a random time series, there is a positive autocorrelation if a variance ratio that is greater than unity, and negative autocorrelation represented by a variance
- autocorrelation if a variance ratio that is greater than unity, and negative autocorrelation represented by a variance ratio test indicate ratio which is smaller than unity.
 Comparing p-value, median of trading volume and oil price volatility index.

MAIN RESULTS

Under variance ratio test with standard error estimates assume no heteroskedasticity, we should accept random walk hypothesis during P2, P3 and P5. Meanwhile, variance ratio value for individual tests during P1 and P4 are more significant from one relatively.

Variance Ratio Test Joint Tes	sts (Standard error	estimates ass	ume no heteros	skedasticity)		Variance Ratio Test Individ	ual Tests (Standard erro	r estimates assume no	heteroskedasticit	y)	
Null Hypothesis	Max z Wald (Chi-Squa		hi-Sauare)			number q of base observation aggregated to form					
Null Hypothesis		IVICA			Sample Period	observations	q=2	q=4	q=8	q=16	
	Observations	Value	Probability	Value	Probability		5265	0.978784	0.933087	0.892029	0.84412
	Observations	Value	Tiobdoliity	Value	TTODADIIIty	01/06/1995-01/06/2016		0.1237	0.0095	0.0081	0.0102
Log Future Price is a random walk	5264	2.648267	0.0320	8.65492	0.0703			1.033903	0.951811	0.873627	0.77004
Log r dialo r noo lo a randoni main	0201	210 10201	0.0020	0.00102	0.0100	01/06/1995-01/06/2002	1750	0.1562	0.2814	0.074	0.0289
Log Period 1 is a random walk	1749	2.184798	0.1107	17.57479	0.0015			0.960818	0.962057	0.937046	0.86049
Les Deried 0 is a readers wells	4.400	4 540000	0.4050	4 0000000	0.0007	01/06/2002-01/06/2008	1500	0.1293	0.4323	0.4099	0.2198
Log Period 2 is a random walk	1499	1.516992	0.4252	4.636559	0.3267			0.967288	0.914064	0.871756	0.86084
Log Period 3 is a random walk	1008	1.458379	0.4649	2.250645	0.6898	01/06/2008-01/06/2012	1009	0.299	0.1447	0.1687	0.3155
Log ronod o to a fandom main	1000	11 100010	0.1010	2.2000 10	0.0000			0.90009	0.914928	0.827722	0.79389
Log Period 4 is a random walk	502	2.238521	0.097	9.72757	0.0453	01/06/2012-01/06/2014	503	0.0252	0.3083	0.1919	0.2941
Log Daried 5 is a random walk	502	2.07315	0.1441	4.966762	0.2907			0.907471	0.881313	0.917647	0.95733
Log Period 5 is a random walk	302	2.0/310	0.1441	4.900/02	0.2907	01/06/2014-01/06/2016	502	0.0382	0.1552	0.5328	0.8281

Under variance ratio test with heteroskedasticity robust standard error estimates, we could accept the null hypothesis for entire time period.


Similarly, we get the same results from individual test that
in P2, P3 and P5, variance ratio are more closer to unit.

Variance Ratio Test Joint Tests	(Heteroskedasticity robust standard error estimates)					
Null Hypothesis		Max z				
	Observations	Value	Probability			
Log WTI Future Price is a martingale	5264	1.832209	0.159			
Log Period 1 is a martingale	1749	1.898024	0.1338			
Log Period 2 is a martingale	1499	1.396968	0.3414			
Log Period 3 is a martingale	1008	0.923391	0.6674			
Log Period 4 is a martingale	502	1.5977	0.238			
Log Period 5 is a martingale	502	1.477686	0.2978			

Variance Ratio Test Individual Tests (Heteroskedasticity robust standard error estimates)							
		number q of base observation aggregated to form					
Sample Period	observations	q=2	q=4	q=8	q=16		
		0.978784	0.933087	0.892029	0.844128		
01/06/1995-01/06/2016	5265	0.287	0.0728	0.0674	0.0708		
		1.033903	0.951811	0.87362	7 0.77004		
01/06/1995-01/06/2002	1750	0.2796	0.3920	0.1388	0.059		
		0.960818	0.962057	0.937046	6 0.86049		
01/06/2002-01/06/2008	1500	0.1558	0.4698	0.4524	0.265		
		0.967288	0.914064	0.87175	6 0.86084		
01/06/2008-01/06/2012	1009	0.5044	0.3664	0.4014	0.5356		
		0.90009	0.914928	0.827722	2 0.79389		
01/06/2012-01/06/2014	503	0.1186	0.4628	0.3184	0.3898		
		0.907471	0.881313	0.917647	0.957338		
01/06/2014-01/06/2016	502	0.1424	0.3092	0.6396	0.8676		

CONCLUSIONS

No prediction especially during P2, P3 and P5 because market efficient hypothesis become more powerful.

- Trading volume and oil price volatility index (OVX) have same trend with market efficiency.
- During P3 (2008-2012), p-value rapidly declines which may be explained by financial turmoil experienced during this period.