The Economic Feasibility of UK Onshore Wind Repowering and the Costs Reduction Potential

Esti Tri Widyastuti

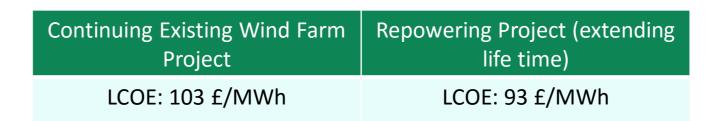
BACKGROUND

What are the **challenges**?

- Difficulty in finding new wind farm sites with excellent characteristics
- Less efficiency of the old turbines
- Higher old wind farm Operating and Maintenance costs

What can we do?

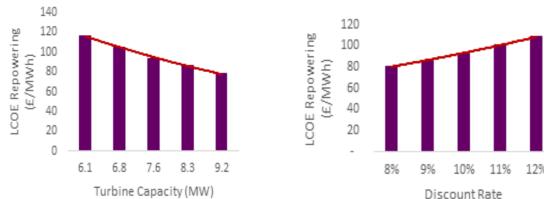
REPOWERING: the effort to gain the power from existing wind farms that have not been efficiently generating the energy by turbines replacement or upscaling

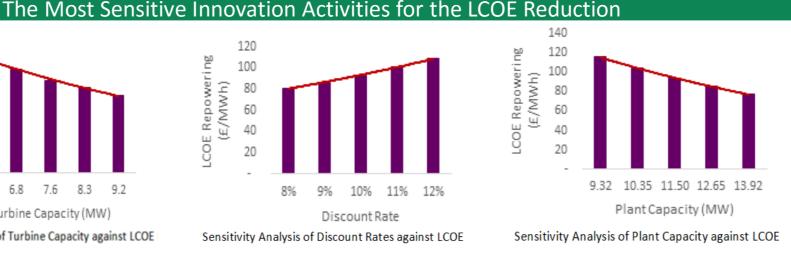

INNOVATIONS: knowledge creation involving all respective parties of the projects

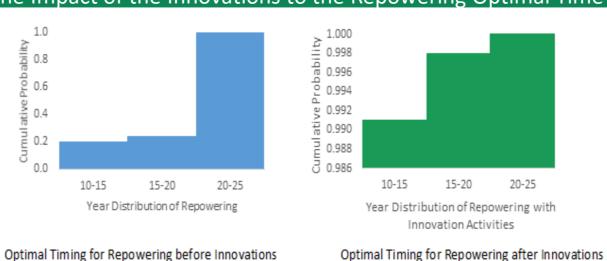
- √ to have lower costs per energy generated
- ✓ to establish onshore wind technology as the lowest cost of the new energy generation

METHODOLOGY

- Multiplicative Binomial Lattice
- **Monte Carlo Simulation**
- **Ordinary Differential Equation**
- Sensitivity Analysis


FINDING


Tornado Diagram of the Input Parameters to the Net Present Value Sensitivity



Tornado Diagram for NPV sensitivity of Repowering Project

The Impact of the Innovations to the Repowering Optimal Time

CONCLUSIONS

REPOWERING vs Continuing existing wind farm project:

Repowering generates lower **LCOE** than continuing existing wind farm, about 10%

By doing **INNOVATIONS**,

- **Shorter optimal timing for** Repowering, between 15 and **20 years** of operations
- LCOE is reduced up to 11%

The **MOST** influencing **INNOVATION** activities for the **LCOE** reduction:

- Larger turbine capacity
- Larger plant capacity
- Lower discount rate

