Strategic investment and asset optimisation in the LNG shipping industry: A framework for the real options analysis of vessel chartering arrangements under stochastic freight rates

Name: Doug Thomson

Explanation:

- The LNG shipping industry remains a highly undeveloped niche of the shipping industry, characterised by extremely high levels of capital investment and correspondingly high levels of risk aversion.
- This is at odds with the traditional buccaneering approaches taken in other sectors of the shipping industry which are well suited to the super-cyclical characteristics of the market.
- LNG ship owners regularly offer highly flexible chartering (leasing) arrangements to charterers without adequate compensation.
- This study suggests that this flexibility is of substantial value and ship-owners would benefit from its explicit valuation through the application of real options valuation techniques.
- To this end an intuitive valuation framework is established which is built upon the tools readily available to all market practitioners.

Compr	eh
Option	
- priori	
Option criteria	
TC length (months)	
Extension length	
Exercise notice period	
Common inputs	
TC rate (USD/day)	
Extension rate (USD/day)	
Discount rate	
Historical Annual Volatility (σ)	
Historical Monthly Volatility (o)	
Black-Scholes m	etho
Inputs	_
K (Strike Price)	
S (PV of underlying asset)	
T (
1 (years)	
t (months)	
d1	
42	
42	-
Call option value	
Option value to TC value ratio	
option value to 10 value ratio	
Boyle et al. (1997) methodology -	Mor
Without deterministic trend	
Monthly volatility of simulated rates	
Simulated TC rate (mean)	
Extension $E(PV)$ at t = 5/22 (mean)	
Time charter NPV	
Call option value estimate (mean)	
Option value to TC value ratio	
With deterministic trend	
Monthly volatility of simulated rates	
Simulated TC rate (mean)	
Extension E(PV) at $t = 5/22$ (mean)	
Time charter NPV	
Call option value estimate (mean)	

value to TC value ra

Payoff to ship-owner at expiry = $-\max(S_t - K, 0)$

Payoff to charterer at expiry = max $(S_t - K, 0)$

Option 2 - Extension option timeline

The framework:

Thomson.douglas.a@gmail.com University of Aberdeen, King's College, Aberdeen, AB24 3FX

UNIVERSITY OF ABERDEEN

Stochastic freight rates simulation without deterministic trend sample (20 iterations)

2020 2020 2021 2021 2022 2023 2023 2024 2024

Monte Carlo simulation results scatter plot (charterer's estimated 'payoff' at expiry) Option value 30 estimate 10,672,870 20 10 20 -10 Million -20

• Extension PV at t=5 vs. option point estimate scatter

Value of underlying asset at expiry (t = 22) (USD)

• Mean option value

(USD)

Option pricing point

estimate

 $C = (S_t - K, 0)$

Monte Carlo simulation results scatter plot (shipowners estimated 'payoff'' at expiry)

Value of underlying asset at expiry (t = 22) (USD)

• Extension PV at t=5 vs. option point estimate scatter

• Mean option value estimate

www.abdn.ac.uk

DCF Outputs

TC NPV

DCF Stochastic outputs

St