The Costs of Scottish Independence – The Economic Implications of Scottish Electricity Companies: A Case Study of SSE and Scottish Power

David Ririmasse

BACKGROUND

Scottish Independence would probably stop BETTA. The consequences for SSE and Scottish Power:

- renewable subsidy would be stopped, and
- market size would be mitigated.

Research obectives:

to understand the following issues:

1. The key potential of economic implications of SI to financial performance of SSE and SP.

2. The costs of SI towards financial performance of SSE and SP.

3. The policies of SSE and SP under SI as anticipation to maximize their profits.

4. The role of vertical integration under SI.

METHODOLOGY & DATA

Variable Inputs Assumptions Wind CCGT Total Capacity (MWh) - SSE 4,790 1,654 Total Capacity (MWh) - SP 1,999 1,319 Number of power plants - SSE 16 6 Number of power plants - SP 4 9

Summary of power generation profiles of SSE and SP

	Electricity price (£/MWh)	Percentage from revenue		Additional	
		SSE	SP	transmission network costs (£/year)	
BETTA	97	100%	100%	-	
Base case scenario	70	20%	56%	154k	
Alternative scenario	70	42%	39%	154k	

Basic assumptions

David Ririmasse

Revenue Costs — EBITDA Margin

	Base Case	Remained UK	Decrease	%
SSE (£ million)				
CCGT	(305)	9	(314)	-3508%
Onshore wind	(16)	341	(357)	-105%
Total	(321)	350	(671)	-192%
SP (£ million)				
CCGT	(89)	8	(97)	-1188%
Onshore wind	71	262	(191)	-73%
Total	(18)	270	(288)	-107%

Sensitivity analysis

Onshore win

david.ririmasse.16@aberdeen.ac.uk +447460066319 University of Aberdeen, King's College, Aberdeen, AB24 3FX

ernative case	Remained UK	Decrease	%
(217)	9	(226)	-2495%
50	341	(291)	-85%
(167)	350	(517)	-148%
(127)	8	(135)	-1649%
32	262	(230)	-88%
(95)	270	(365)	-135%

Estimated effect on aggregate EBITDA – alter-case scenario

Fotal ts of SI 2020 ¹	Estimated Aggregate EBITDA remained UK ²	Estimated Aggregate EBITDA under SI ³⁼¹⁺²	Change ^{4=1:2}
(517)	212	(305)	-244%
(365)	17	(348)	-2121%

LCOE - Onshore wind

■CAPEX/MWh ■OPEX/MWh

Tornado diagram - LCOE analysis (±10% changes to key parameters,

Market analysis		
Description	SSE	SP
Demand (in MWh) ⁽¹⁾	10,816,215	10,816,215
Supply (in MWh) ²	4,274,267	3,328,450
Deficit supply (in MWh) ⁽³⁾⁼⁽¹⁾⁻⁽²⁾	6,541,948	7,487,765
Current installed capacity (in MW) ⁽⁴⁾	1,654	1,319
Proportion deficit supply to current supply ^{(5)=(3)/(2)}	1.53	2.25
Required new installed capacity (in MW) ^{(6)=(4) x} (5)	2,532	2,967

Electricity supply and demand forecast in 2020

CONCLUSION

- SI generates losses for SSE and SP under both scenarios.
- At the generation business level, SSE is affected more than SP.
- At the aggregate level of all business, SP is burdened more costs.
- Profitability of onshore wind projects are more sensitive to SI. ۲
- LCOE both companies is higher than electricity price under SI.
- In the future, both companies could improve their LCOE components through inventiveness as vertically integrated firms by engaging long-term contract and optimizing capacity through technological innovation.

www.abdn.ac.uk

