Economic Analysis on Integrated Gasification Combined Cycle (IGCC) under Two Environmental Fiscal Policies in Korea

Sunbee Kim

Introduction

Current Issues in Korean Electricity Market

- Increasing risk of electricity shortage due to \checkmark High demand
 - ✓ The lack of power generation facilities

- Environmental fiscal policy in Korea
- ✓ The world's second largest Emission Trading Scheme (ETS)
- ✓ Tax on imported coal
- Persistent dispute between the government and industries closed the emission trading market (current revenue from ETS = 0)

Objective

- Analyse the investment feasibility of IGCC under the current environmental policy in Korea
- Analyse whether the current environmental fiscal policy provides the optimal tax benefit to the society

IGCC

Methodology

- Monte Carlo simultion to compare investment returns on the conventional PC, thermal IGCC and lignite IGCC under two fiscal policies:
 - ✓ Coal Tax (along with ETS)
 - Carbon Tax
- Compare tax benefits under coal tax and carbon tax

Results

Investment Analysis

- Under the current coal tax scheme
- The conventional PC yields the highest investment return \checkmark
- The lignite IGCC yields the lowest marginal cost (LCOE) \checkmark

Coal Tax	Conventional PC	Thermal IGCC	Lignite IGCC
Pre-Tax NPV	US\$ 1,653 million	US\$ 1,572 million	US\$ 1,700 million
Post-Tax NPV	US\$ 980 million	US\$ 920 million	US\$ 850 million
LCOE	US\$ 51.60	US\$ 52.90	US\$ 48.71

- Under the carbon tax scheme •
 - The lignite IGCC yields the highest investment return and the lowest marginal cost (LCOE)

	• ·		
Carbon Tax	Conventional PC	Thermal IGCC	Lignite IGCC
Pre-Tax NPV	US\$ 1,672 million	US\$ 1,553 million	US\$ 1680 million
Post-Tax NPV	US\$ 609 mllion	US\$ 572 million	US\$ 637 million
LCOE	US\$ 60.20	US\$ 65.07	US\$ 56.00

Sunbee Kim

s.kim.14@aberdeen.ac.uk

Petroleum, Energy Economics and Finance (PEEF)

- **Fiscal Policy Analysis**
- Social benefits from the carbon tax is greater than the coal tax

	Conventional PC	Thermal IGCC	Lignite IGCC
Coal Tax Benefits	US\$ 258 million	US\$ 222 million	US\$ 434 million
Carbon Tax Benefits	US\$ 740 million	US\$ 608 million	US\$ 630 million

Supply and Demand under Carbon Tax Supply and Demand under ETS

- Both ETS and carbon tax decreases the supply curve, but
- \checkmark ETS: perfectly inelastic supply curve \rightarrow worsens the power shortage problem due to limited emission level
- ✓ Carbon Tax: decrease in supply curve \rightarrow higher electricity price yet still can produce more electricity

Conclusion

- Under the current fiscal policy (ETS+Coal Tax)
 - IGCC is not an attractive investment opportunity \checkmark
 - Conventional PC still yields sufficient investment return due to less capital expenditure
 - \clubsuit But, conventional PC \rightarrow higher greenhouse gas (GHG) emission
- Under the fixed carbon tax scheme
- ✓ Higher tax benefit
- ✓ Government can utilize the increased tax benefit to directly subsidise industries to develop more efficient, low-GHG technologies
- \checkmark The government's direct subsidisation \rightarrow can reduce burdens of IGCC's excessive capital expenditure

www.abdn.ac.uk University of Aberdeen, King's College, Aberdeen, AB24 3FX