MINIMUM ECONOMIC FIELD SIZE ANALYSIS ACROSS THE **UKCS AND ITS IMPLICATIONS FOR THE DISCOVERED** RESOURCES

PERIKLIS SERGIS

INTRODUCTION

United Kingdom Continental Shelf (UKCS) is a mature basin that produce oil & gas. The number of fields has increased over time, new discoveries are much smaller and many fields are marginal and inter dependent. This study is an economic evaluation for three different oil & gas fields and examine the feasibility of the development of them.

AIM

The project deals with an economic evaluation and investment of some of the un-developed discoveries of the UKCS. The aim of the project is to investigate if the small discoveries close to oil fields in the North Sea are economically viable.

METHOD

Field	Model	Description		
Amos	Deterministic	Is the base case scenario for which		
		input variables are fixed.		
		Deterministic analysis is undertaken		
		to estimate NPV, IRR. Sensitivity		
		Analysis on NPV is carried out. Base		
		Price assumed 60 \$/ bbl.		
Vorlich	Deterministic	Deterministic analysis is undertaken		
		to estimate NPV, IRR. Sensitivity		
		Analysis on NPV is carried out. Base		
		Price assumed 60 \$/ bbl.		

Field	Model	Desc
Cepheus	Deterministic	Is the base case sco
		variables are fixed.
		undertaken to estima
		Analysis on NPV is o
		assumed 44 pence/ the
Amos &	Stochastic	Oil prices were rando
Vorlich		normal distribution. N
		(1000 times) to check th
		NPV of the project.
Cepheus	Stochastic	Gas prices were rando
		normal distribution.
		(1000 times) to check th
		NPV of the project.

Periklis Sergis p.sergis16@abdn.ac.uk +44 (0) 778 635 0157 www.abdn.ac.uk MSc in Petroleum, Energy, Economics and Finance University of Aberdeen, King's College, Aberdeen, AB24 3FX

cription

enario for which input Deterministic analysis is te NPV, IRR. Sensitivity carried out. Base Price rm.

omly simulated assuming MC Simulation was run heir effect on the Post Tax

omly simulated assuming MC Simulation was run heir effect on the Post Tax

Summary Output Vorlich Field			
Pre-Tax NPV (\$m)	\$497.76		
Post Tax NPV (\$m)	\$303.86		
IRR (%)	22%		
NPV/I	80%		
Government Tax (\$m)	\$294.90		
Government Take (%)	39.55%		
Breakeven Price (\$/bbl.)	37.41		

48.75% of generating a positive NPV - Oil Price- Vorlich Field