ECONOMIC ANALYSIS AND INVESTMENT APPRAISAL OF AN OFFSHORE WIND FARM IN CYPRUS

ANDRIANI POSIDIA

MOTIVATION

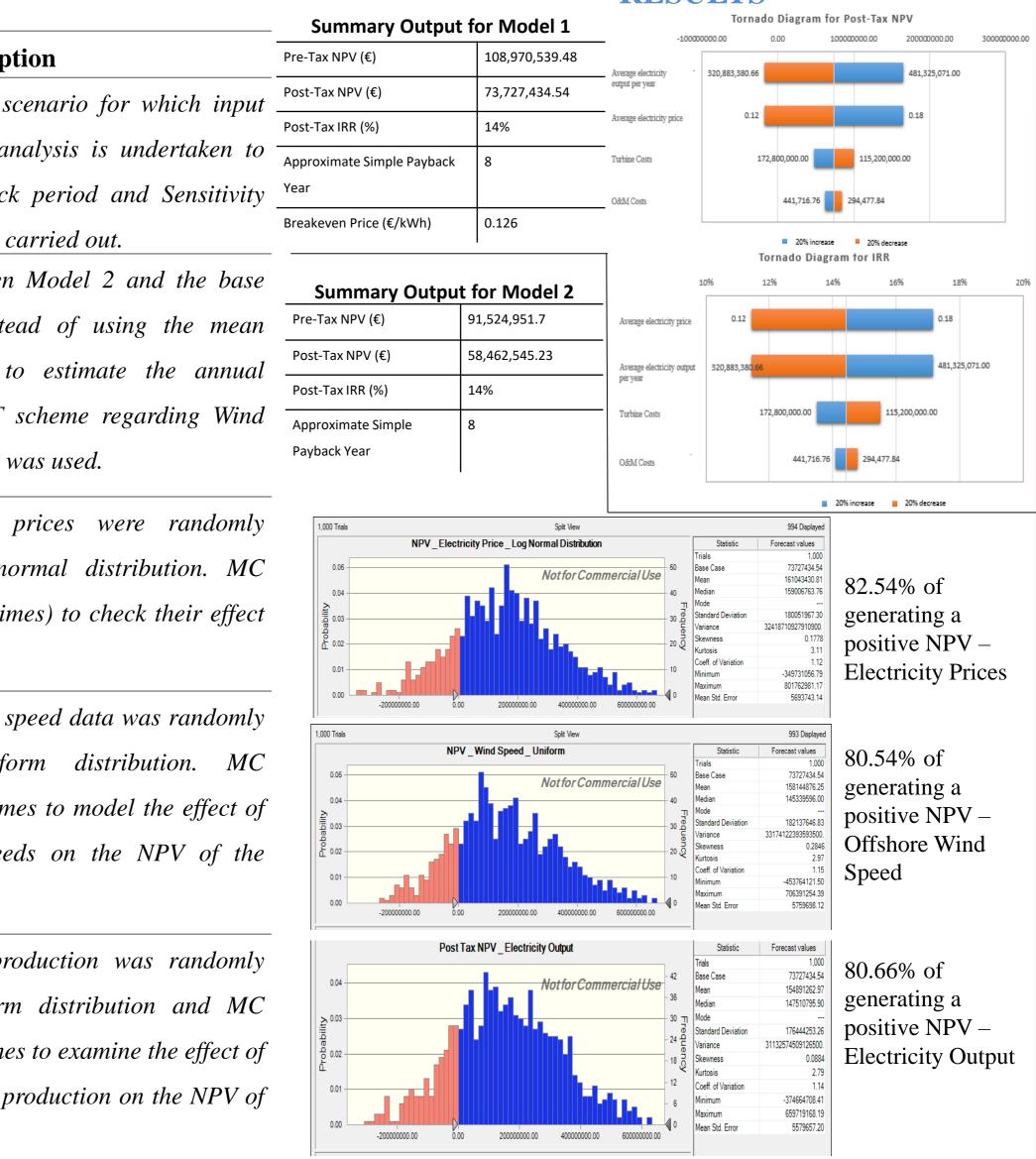
Cyprus, as well as most of island states, heavily depend on the import of fossil fuels to meet their energy needs and as a result they suffer from high electricity production costs due to the high transportation charges, diseconomies of scale in the electricity generation and the existence of an isolated electricity system.

Supplying affordable and clean electricity is crucial for the country to sustain the level of economic growth in the long-run. Also, considering the abundance of various Renewable Energy Sources (RES) including solar, wind energy and biomass, moving towards a green economy, seems to offer a gateway to the country in dealing with its energy challenges.

Currently there are six operating onshore wind farms in the country, contributing to around 5% of the annual nationwide electricity production; wind energy is the source contributing the most in electricity generation in Cyprus. Given the country's current energy challenges and its RE potential as well as the upward trend of investing in offshore wind projects in EU over the last five years, led to the decision of completing this research project.

AIM

The project deals with an economic analysis and investment appraisal of an offshore wind farm in Cyprus. The aim of the project is to examine whether an offshore wind farm investment is Cyprus is economically viable.


Model	Туре	Descrip
1	Deterministic	Model 1 is the base case s
	Model	variables are fixed. DCF an
		estimate NPV, IRR, payback
		Analysis on NPV and IRR is c
2	Deterministic	The only difference between
	Model	case scenario is that inste
		average electricity price t
		revenues, the previous FIT
		Parks in CY (fixed variable) v
3	Stochastic	Annual mean electricity
	Model	simulated assuming log no
		Simulation was run (1000 tin
		on the NPV of the project.
4	Stochastic	Mean annual offshore wind s
	Model	simulated assuming unife
		Simulation was run 1000 tim
		varying offshore wind spee
		project.
5	Stochastic	Mean annual electricity pr
	Model	simulated assuming uniform
		simulation was run 1000 time
		the mean annual electricity p
		the project.

andriani.posidia.16@aberdeen.ac.uk +44 (0)7474723632 www.a University of Aberdeen, King's College, Aberdeen, AB24 3FX

METHOD

RESULTS

www.abdn.ac.uk