An Assessment of the Economics of Undeveloped Discoveries in the Southern North Sea of the UK Continental Shelf through Employment of Cluster **Developments and the Introduction of Floating CNG Technology (FCNG)**

Sermphon Klaiseengern

Background

- Small size of discoveries in the SNS provides challenges in encouraging new investments. Many of them may not be economically viable to be developed individually.
- This study accesses the economics of 27 small unsanctioned discoveries in the SNS, with raw data provided by the OGTC, whether they can be economically viable via the employment of 4 development scenarios:
 - 1. Standalone Development
 - 2. Cluster Development 1
 - 3. Cluster Development 2
 - 4. FCNG Deployment
- Scenarios 3 & 4 consider the absence of some existing infrastructure which are ageing and due to be decommissioned.

Each scenario is examined through the investor lacksquarein 2 taxation situations: Ongoing Investor (in a full tax-paying position) & Project Investor (not in a full tax-paying position), to analyse the impact of the current taxation system.

Methodology Mapping Exercise

In each scenario, the fields were tiedin to the existing facilities and/or potential common infrastructure, based on GIS data from the UKCS Interactive Map.

Financial Simulation Models

Deterministic Model: Determination of Cash Flows. Calculation of NPVs, IRRs and NPV/I Ratios (Pre-Tax & Post-Tax).

Sensitivity Analysis: Analysing all input variables - Tornado Chart. Spider plot to locate breakeven points of 4 main parameters on Scenario 3 & 4. **Probabilistic Model:** MC Simulation on Gas Price (Log-Normal Distribution), Reserves, DEVEX and **OPEX** (Normal Distribution).

Sermphon Klaiseengern s.klaiseengern.16@aberdeen.ac.uk +44 (0) 7724289946 University of Aberdeen, King's College, Aberdeen, AB24 3FX

Main Findings

Conclusions

- (less than 3.4 mmboe).
- cannot recover their costs.

- enable this technology.

UNIVERSITY OF ABERDEEN

licators	Standalone	Cluster 1	Cluster 2	FCNG
	-107.2	-13.7	6.5	-1107.9
g Investor (m£)	-40.4	13.9	25.8	-629.3
Investor (m£)	-257.5	-171.5	-154.6	-1163.6
	8%	12%	12%	N/A
Investor	10%	13%	14%	N/A
nvestor	1%	4%	5%	N/A
	-14%	-2%	1%	-67%
ng Investor	-5%	2%	4%	-38%
t Investor	-33%	-25%	-23%	-70%

• Less than half of the small pools show positive returns since most of them have relatively low P50 reserves

• Only Scenario 3 shows positive aggregate pre-tax and post-tax returns (for ongoing investor); very marginal profits. But project investor's post-tax returns are substantially negative because many small fields

 Project investor requires higher reserves & gas price, and lower costs to justify his investment.

• Economies of scale of cluster developments would be very worthwhile, but still have high risks to encounter negative aggregate returns & very low likelihood that more than half of fields will be economic.

• FCNG is currently uneconomic and not yet a suitable alternative for SNS marginal gas fields. Require much lower FCNG costs & higher aggregate reserves to