Civil and Structural Engineering MEng, Single Honours

Civil and Structural Engineering, MEng

Introduction

Structural Engineering is generally recognised as a specialist area of Civil Engineering but the two areas are very similar. This is a perfect degree programme for those looking to succeed in this field as it offers up our hugely successful standard Civil Engineering degree but introduces a number of key areas of specialism.

Contact

Email
study@abdn.ac.uk
Phone
+44 (0)1224 272090

Key Facts

UCAS Code
H225
Duration
5 Years
Study Mode
Full Time
Start Month
September
Learning Mode
On Campus Learning

Interested in this Degree?

How to Apply

Overview

This Honours degree programme follows a similar structure to the straight MEng Civil Engineering degree. The major difference is the compulsory study of the Advanced Structural Analysis in year 4.

This course extends the basic stiffness method of analysis developed in the pre-requisite courses. Fundamental principles of the stiffness method of analysis, with automatic assembly of the stiffness matrix for rigid jointed plane frames and space structures, are presented in some detail. Elastic instability of frames, and the design of continuous steel beams and portal frames using plastic methods will be undertaken. Analysis of flat plates and slabs using yield line theory, and an introduction to shells also covered. The course concludes with a brief outline of the finite element method of analysis, with computer-based applications forming an important practical component.

What You'll Study

Year 1

Compulsory Courses

Principles of Electronics (EG1008)

The aim of the course is to introduce basic concepts of electrical & electronics within a context of general engineering. The topics covered are kept at an elementary level with the aim of providing the foundational material for subsequent courses at levels 1 and 2. The course adopts the philosophy of application oriented teaching. During each topic the students will be provided with examples of day-to-day devices. Topics covered include dc circuit analysis, electronic amplifiers, digital circuits, optoelectronics, and ac theory.

Fundamentals of Engineering Materials (EG1012)

Engineering design depends on materials being shaped, finished and joined together. Design requirements define the performance required of the materials. What do engineers need to know about materials to choose and use them successfully? They need a perspective of the world of materials. They need understanding of material properties. They need methods and tools to select the right material for the job. This course will help you develop knowledge and skills required for the successful selection and use of engineering materials.

CAD and Communication in Engineering Practice (EG1010)

The course is designed to introduce the students to different methods of communication in the process of interchanging ideas and information. Oral presentation and writing of technical reports are introduced. The importing data from web-based and library-based sources will be integrated through information retrieval and investigative skills training. Professional ethics are covered on plagiarism, copyright and intellectual property. Engineering drawing skills and knowledge of relevant British and International Standards will be developed through intensive training in the use of computer aided design and modelling package, SolidWorks. Standard drawing formats including 3D depiction of stand alone parts and assemblies are covered.

Fundamental Engineering Mechanics (EG1510)

Engineering Mechanics is concerned with the state of rest or motion of objects subject to the action of forces. The topic is divided into two parts: STATICS which considers the equilibrium of objects which are either at rest or move at a constant velocity, and DYNAMICS which deals with the motion and associated forces of accelerating bodies. The former is particularly applied to beams and truss structures. The latter includes a range of applications, such as car suspension systems, motion of a racing car, missiles, vibration isolation systems, and so on.

Engineering Mathematics 1 (EG1504)

The course presents fundamental mathematical ideas useful in the study of Engineering. A major focus of the course is on differential and integral calculus. Applications to Engineering problems involving rates of change and averaging processes are emphasized. Complex numbers are introduced and developed. The course provides the necessary mathematical background for other engineering courses in level 2.

Professional Skills Part 1 (PD1001)

This course, which is prescribed for level 1 students and optional for level 2 students, is studied entirely online and covers topics relating to careers and employability, equality and diversity and health, safety and wellbeing. During the course you will learn about the Aberdeen Graduate Attributes, how they are relevant to you and the opportunities available to develop your skills and attributes alongside your University studies. You will also gain an understanding of equality and diversity and health, safety and wellbeing issues. Successful completion of this course will be recorded on your Enhanced Transcript as ‘Achieved’ (non-completion will be recorded as ‘Not Achieved’). The course takes approximately 3 hours to complete and can be taken in one sitting, or spread across a number of weeks and it will be available to you throughout the academic year.

Optional Courses

  • Select a further 45 credit points from courses of choice, including at least 60 from Sustained Study, Disciplinary Breadth or Sixth Century courses over First and Second Year combined.

Year 2

Compulsory Courses

Engineering Mathematics 2 (EG2012)

This course follows Engineering Mathematics 1 in introducing all the mathematical objects and techniques needed by engineers. It has three parts:

  • Matrices: definitions, operations, inverse and determinant; application to systems of linear equations.
  • Ordinary differential equations: 1st order (linear and separable), 2nd order with constant coefficients, forced osciallations and resonance.
  • Functions of two variables: partial derivatives and extrema, the chain rule, the heat equation and the wave equation.
Process Engineering (EG2011)

A general engineering course that provides an insight into the two main conservation principles, mass and energy. Processes are usually described through block diagrams. This language, common to many disciplines in engineering, helps the engineering to look at their processes with an analytical view. Degree of freedom analysis is addressed, emphasising its importance to solve a set of linear equations that model fundamental balances of mass. Practical examples of Energy balances are displayed, bringing Thermodynamics to a practical level. Process control is also introduced, explaining basic control techniques and concepts, i.e sensors, feedback, control loops and PID controllers.

Fluid Mechanics and Thermodynamics (EG2004)

The fluid mechanics section of the course begins with the material properties of fluids. This is followed by studying fluid statics and principles of fluid motion. Bernoulli’s equation is used to explain the relationship between pressure and velocity. The final fluids section introduces the students to incompressible flow in pipelines.

The thermodynamics section presents: the gas laws, including Van Der Waals’ equation; the first law of thermodynamics with work done, heat supply, and the definitions of internal energy and enthalpy. The second law is introduced including entropy through the Carnot cycle.

Design and Computing (EG2501)

The use of computing (MATLAB) as an aid to practical design and as computational analysis tool will be developed. The course covers engineering design process. Exercises will be undertaken to gain an appreciation of the development of existing designs. Material selection is included from a viewpoint of quality, impact on environment and sustainability. Practical aspects of the manufacturing process is covered through lectures and hands-on experience of workshop practice. Advanced use of SolidWorks and milling simulation software will be covered culminating in the production. Issues such as design protection, copyright and patents will be explained as part of this process.

Solids and Structures (EA2502)

This course provides students with the opportunity to refresh and extend their knowledge to analyse the mechanical behaviour of engineering materials and structures. In particular, mechanical properties of materials, and 2D and 3D stresses and strains are examined, the effects of internal imperfections on the performance of materials under loading, brittle fracture, fatigue and non-destructive testing are discussed. The structural analysis of beams and columns, deflection and buckling, as well as design applications are also considered in the course.

Electrical and Mechanical Systems (EG2503)

This course provides students with an integrated development of methods for modelling, analysing and designing systems comprising electrical and mechanical components. In doing so it intends to emphasise to the students the similarity in behaviour between electrical and mechanical systems. The course aims to give an introduction to both electrical machines, circuit and systems, transformers, and similar mechanical systems like gearbox, vibrating system and principles of dynamics, and thus provide the foundation material for several courses at level 3 .

Optional Courses

  • Select a further 30 credit points from courses of choice, including 60 credits from Sustained Study, Disciplinary Breadth or Sixth Century courses over First and Second Year combined.

Year 3

Compulsory Courses

EA 3027 Geotechnics 1

EM 3018 Fluid Mechanics

Engineering Analysis and Methods 1 (EG3007)

Modern engineering analysis relies on a wide range of analytical mathematical methods and computational techniques in order to solve a wide range of problems. The aim of this course is to equip students with the necessary skills to quantitatively investigate engineering problems. Examples applying the methods taught to practical situations from across the full range of engineering disciplines will feature heavily in the course.

Stress Analysis A (EM3015)

One of the roles of an engineer is to ensure that engineering components perform in service as intended and do not fracture or break into pieces. However, we know that sometimes engineering components do fail in service. Course examines how we determine the magnitude of stresses and level of deformation in engineering components and how these are used to appropriately select the material and dimensions for such component in order to avoid failure. Focus is on using stress analysis to design against failure, and therefore enable students to acquire some of the fundamental knowledge and skills required for engineering design.

Mechanics of Structures (EA3518)

The major topic of this course is an introduction to modern methods of elastic structural analysis. In this topic, direct, energy and matrix methods are jointly used to solve, initially, problems of the deformation of simple beams. The theorem of virtual work is introduced in the context of beams and frameworks.

The rigid-plastic analysis of beams is then introduced along with the upper bound theorem and their importance to engineering design.

Design of Structural Elements (EA3519)

This course is an introduction to Structural Design using steel, concrete and composite steel/concrete.

The emphasis is on the design of individual components – the ‘Structural Elements’ – these being members in tension, compression, bending – in either steel or reinforced concrete – and in the bolted and welded connections between steel members.

Associated with this course is an extensive laboratory exercise testing reinforced and un-reinforced concrete to destruction.

It should be noted that students are also required to do the separate course EG3720, half of which consists of a 9 week Steel Design exercise.

Structural Dynamics A (EA3538)

This course introduces the theory of dynamics and the vibration of single and multi-degree of freedom systems.

Project and Safety Management (EG3599)

To course aims to provide students with an awareness of purpose, principals, fundamental concepts and strategies of safety and project management.

Civil Engineering Design and Surveying and Hydrology Field Trip (EA3720)

This course consists of two quite separate halves. The first is a 9 week Civil Engineering Design activity, which runs concurrently with the associated course EG3519 (Design of Structural Elements). Generally there will be two half days of timetabled sessions in each of those 9 weeks. The second half of the course is a one-week residential Field Surveying and Hydrology field trip, which usually takes place in the first week of the Easter break. There will be a charge to students to cover the specific transport, food and accommodation costs associated with that field trip.

Year 4

Compulsory Courses

MEng Individual Project (EG4013)

To provide the student with the opportunity of pursuing a substantial and realistic research project in the practice of engineering at or near a professional level, and to further enhance the student's critical and communication skills. The project will usually be carried out at the University of Aberdeen but may be carried out at industry or other research location.

Geotechnics 2 (EA40JE)

It aims to equip students with the main concepts of foundation design where the concepts of pile foundations, retaining walls and slope stability are explored. The course gives a student adequate tools to understand the design approaches associated with different types of soil. Geotechnical standard code, Eurocode 7 is introduced and discussed. In addition principles of ground water flow and the main problems related to its sustainable management are discussed. This course aims for a student to reach an adequate level in soil mechanics and foundation engineering as the basis for the training of a professional civil or structural engineer.

Civil Engineering Hydraulics (EA40JF)

The course begins with consideration of boundary layer development over a flat plate and curved surfaces, leading to boundary layer separation and forces on immersed bodies. This is followed by study of water wave theory with application to coastal and offshore engineering. These topics are also part of the EG40JJ Fluid Dynamics course. The second part of the course focuses on open channel flow and sediment transport, covering the St Venant equations, calculation of gradually varied flow profiles, fundamental aspects of sediment transport, and the calculation of bed load and suspended load transport.

Advanced Structural Design (EA40JG)

This course is a follow-on course to the Level 3 Course on Design of Structural Elements (EG3519) (and to some extent the Level 3 Civil Engineering Design (EG3720)). It covers four main areas:

a) Design of Industrial Buildings in Structural Steelwork

b) Design of steel-framed multi-storey buildings

c) Design of domestic buildings using masonry and timber

d) Design of pre-stressed concrete

Advanced Structural Analysis (EA4526)

Course extends the basic stiffness method of analysis developed in the pre-requisite courses. Fundamental principles of the stiffness method of analysis, with automatic assembly of the stiffness matrix for rigid jointed plane frames and space structures, are presented in some detail. Elastic instability of frames, and the design of continuous steel beams and portal frames using plastic methods will be undertaken. Analysis of flat plates and slabs using yield line theory, and an introduction to shells also covered. The course concludes with a brief outline of the finite element method of analysis, with computer-based applications forming an important practical component.

Optional Courses

  • Select a further credit points from Disciplinary Breadth or Sixth Century courses.

Year 5

Compulsory Courses

Structural Dynamics 2 (EG5056)

The need for understanding dynamics in modern structural engineering arises from the fact that structures are often subjected to dynamic loads such as waves, wind, earthquake, blast and impacts. The structural engineer must therefore be able to understand and quantify dynamic loads and their effects. This course reviews the fundamentals of structural dynamics and explains more advanced concepts and methods (including analytical and numerical), as well as their applications to practical design and analysis problems. The theoretical concepts are illustrated by worked examples and numerous tutorial problems and assignments will enable students to gain confidence in their use.

MEng Group Design (EG5565)

Real-life contemporary engineering projects and challenges invariably require inputs from, and collaboration amongst, multiple disciplines. Furthermore, legal and economic aspects, as well as safety, team work and project management must also be successfully navigated through. This course enables students to immerse themselves in a realistic, multidisciplinary, multifaceted and complex team design project that will draw on their previous specialist learning and also enable gaining and practicing new skills of direct relevance to their professional career.

Numerical Simulation of Waves (EG501S)

Wave equations describe transient phenomena commonly encountered in all areas of engineering. This course covers: (i) elastic waves, such as response of offshore structures to wind or wave loading, earthquakes; (ii) acoustic waves such as water hammer in pipelines, micro-pressure waves in railway tunnels; (iii) electromagnetic waves, such as signals in transmission lines, transient states in DC cables. These phenomena in real world engineering applications are simulated using several numerical methods. Students develop their own simulation codes using Matlab or any other programming language, and run a series of simulations for the problem of their choice.

The Engineer in Society (EG501W)

Students will examine the societal grand challenges of water, food, medicine and energy (electricity and heat) to thread together the themes of environment, sustainability and ethics.

The course also aims to provide graduates with a versatile framework for evaluating and developing business models which should prove invaluable for both potential entrepreneurs and future senior executives.

Optional Courses

Select two of the following:

  • Pipelines and Soil Mechanics (EG55F2)
  • Risers Systems and Hydrodynamics (EG55F6)
  • Mathematical Optimisation (EG551T)
  • Engineering Risk and Reliability Analysis (EG55P6)

Select one of the following:

  • Offshore Structural Design (EA50JG)
  • Computational Fluid Dynamics (EG501V)
Pipelines and Soil Mechanics (EG55F2)

Offshore production of oil and gas requires transportation of the oil and gas from where it is produced to shipping vessels, storage tanks or refinery. The transportation is done using pipelines which are installed on the seabed. This course examines the engineering and scientific concepts that underpin the selection of the material and size of such pipelines as well as safe installation and operation. The environmental impact and the role played by the seabed profile are also discussed. Contribution from industry-based practicing engineers is used to inform students of current practices and technologies in subsea pipelines.

Risers Systems and Hydrodynamics (EG55F6)

The course provides students with detailed knowledge of risers systems design considerations. Typical riser systems including flexible, steel catenary, hybrid and top tensioned riser systems are covered. The ocean environmental hydrodynamics and interactions between vessel, mooring and riser systems are also considered.

We will endeavour to make all course options available; however, these may be subject to timetabling and other constraints. Please see our InfoHub pages for further information.

Undergraduate Open Day

Our next Open Day will be on

Find out more

How You'll Study

Learning Methods

  • Lectures
  • Tutorials
  • Lab Work
  • Research
  • Individual Projects
  • Group Projects
  • Seminars

Assessment

Students are assessed by any combination of three assessment methods:

  • coursework such as essays and reports completed throughout the course;
  • practical assessments of the skills and competencies learnt on the course; and
  • written examinations at the end of each course.

The exact mix of these methods differs between subject areas, year of study and individual courses.

Honours projects are typically assessed on the basis of a written dissertation.

Why Study this Degree?

Why Engineering

  • The first two years you study general engineering, with elements of Chemical, Civil, Electrical/Electronics, Mechanical and Petroleum. This means you have vital knowledge of all areas – making you far more adaptable in employment.
  • Programmes reflect ‘systems engineering’ approach in modern industry.
  • World-class facilities, including laboratories dedicated to areas of work such as satellite communications, computer aided design, electrical machines, materials testing, laser welding, hydraulics, fluids, concrete, large structures and geotechnics.
  • Our philosophy is one of world-class teaching in an atmosphere of research. Staff in the School have won national awards, and strong links with industry ensure teaching is in line with today's requirements.
  • The School has produced thousands of career-ready graduates over the decades, many who have progressed into Managing Director and Chief Executive roles in the oil and gas and wider energy industries.
  • We work closely with colleagues across geology, chemistry and business disciplines to ensure the teaching is fit-for purpose.
  • We are well connected with local, national and international industry, particularly in the oil/gas/energy industry where students get the chance to experience real-life industry challenges and projects, through guest lectures, visits and networking.
  • Accreditation by the relevant professional engineering institutions, providing first steps into becoming a chartered engineer. UG Engineers intending to follow an engineering career should consider student membership of the relevant institution.
  • Our award winning Society of Petroleum Engineers (SPE) Student Chapter is one of the 230 student chapters around the world. We build strong relationships with members and non-members alike, and help you gain insight into the oil and gas industry.
  • TAU Racing was established in 2007 by a group of undergraduate engineers of various disciplines. Each year the team's goal is to design and build a single seat racing car to compete at Silverstone in the Formula Student competition.
  • We have a number of student-run Societies, including our Engineering Society. These are great social groups to get involved with and deliver a number of benefits and opportunities for industry engagement.
  • Our General Engineering School was ranked 1st in the Scotland and 2nd in the UK in the Guardian League Tables for graduate employment.

Fees and Funding

You will be classified as one of the fee categories below.

For international students entering in 2017/18, the 2017/18 tuition fee rate will apply to all years of study; however, most international students will be eligible for a fee waiver in their final year via the International Undergraduate Scholarship.

Fees and Funding Table for HOME, EU, RUK and International Students
Nationality Status Amount
Home / EU All Students £1,820
RUK All Students £9,000
International Students Students admitted in 2014/15 £15,700
International Students Students admitted in 2015/16 £16,200
International Students Students admitted in 2016/17 £17,200
  • In exceptional circumstances there may be additional fees associated with specialist courses, for example field trip courses. Any additional fees for a course can be found in our Catalogue of Courses.
  • For more information about tuition fees for this programme, including payment plans and our refund policy, please visit our InfoHub Tuition Fees page.

Funding

View all funding options in our Funding Database.

Entry Requirements

Qualifications

  • 4H at AABB
  • AB in Mathematics and Physics/Technological Studies. If applicant presents with H in Technological Studies instead of Physics, Mathematics must be A grade.
  • S at grades 1, 2, or 3, or National 5 at grades A, B or C in English

Note: For entry to Chemical and Petroleum Engineering an SQA Higher or GCE A Level or equivalent qualification in Chemistry is required for entry to year 1, in addition to the general Engineering requirements noted above.

You can find further information under the general Engineering tab on the Undergraduate Entry Requirements page.

Further detailed entry requirements for Engineering degrees.

Language Requirements

To study for a degree at the University of Aberdeen it is essential that you can speak, understand, read, and write English fluently. Read more about specific English Language requirements here.

Students undertaking Education, Medicine or Dentistry programmes must comply with the University's fitness to practise guidelines.

  • TAU Formula Racing

    TAU Formula Racing

    TAU (Team Aberdeen University) Racing was established by a group of undergraduate engineers at the University. The goal each year is to design and build a single seat racing car to compete at Silverstone in the Formula Student competition.

    Find out more
  • Engineering Society

    Engineering Society

    Student led social and employability events and networking.

    Find out more
  • Industry Support

    Industry Support

    Across our programmes in Engineering we have extensive support from industry organisations who teach on individual courses. Here, AGR listen to presentations from Petroleum Engineering students on the Field Development Plan course, which they support

Careers

There can be a progression route taken in Civil and Structural Engineering positions to become an expert advisor within a company or as a consultant in your own right. Careers can include working for specific companies to oversee construction of infrastructure, new buildings, bridges, roads, to understanding load bearing and inspection. You can work for local authorities, utilities, constancies, and as a contractor in your own right.

Key Information Set (KIS)

Unistats draws together comparable information in areas students have identified as important in making decisions about what and where to study. The core information it contains is called the Key Information Set.

You can compare these and other data for different degree programmes in which you are interested.

Contact

Address
Student Recruitment & Admissions Service
University of Aberdeen
University Office
Regent Walk
Aberdeen

AB24 3FX
Email
Phone
+44 (0)1224 272090
What do you think of our new Prospectus?
Feedback