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Laminar-turbulent cycles in inclined stratified shear flows under strong confinement
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1. Motivation

Stably stratified shear flows are ubiquitous in the environment:
• Atmosphere: sea breeze, clear air turbulence
• Lakes: convective circulation due to differential heating and cooling
• Locks in canals: salinity driven

Here, we consider stably-stratified shear flows under strong confinement at an 
incline.

5. Richardson and Reynolds numbers at the onset of instability
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4. Characteristic scales of the ramp-cliff cycle

i. Flow relaminarization (‘ramp’)

ii. K-H billow growth

iii. K-H billow breakdown (‘cliff’)

iv. Decay of residual turbulence

2. Strongly-confined, stably-stratified shear flows generated
as a lock exchange in an inclined tube
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Conclusions
• Strongly-confined stratified shear flows were generated as a lock exchange in an 
inclined tube.

• Laminar-turbulent alternation at 2.5×10‐3 ൏	At	൏	4.0×10‐3.
• Laminar-turbulent cycle characterized by a distinctive ramp-cliff variation in axial 
velocity.

• Necessary criterion for the onset of instability is for local Re to exceed 2200.
• Transverse stratification does not directly control the onset of instability.

•

• Re	increases and Ri decreases during 
each relaminarization phase (thin grey 
line).

• Flow remains laminar to Ri « 0.25.

• Ri does not segregate flows that remain 
laminar (dashed) from those that develop 
K-H billows.

• Necessary criterion for the onset of 
instability is for Re to exceed 2200 (cf. 
uniform pipe flow!).
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3. Laminar-turbulent cycles

a.Laminar-turbulent alternation occurs at intermediate At, θ

b. Mean axial velocity (hence shear) displays a ramp-cliff pattern

At

θ

• d ൌ 20mm

• L	ൌ	167.0cm ×2

• simultaneous PIV-PLIF 
measurements

• 6.5cm window 20d from partition

• Sc ~ 3000.

• θ
• At	ൌ	ሺρ2‐ρ1ሻ/ሺρ2൅ρ1ሻ
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• Brunt-Väisälä frequency 

• ∆U (top) exhibits a sustained ramp-cliff pattern.

• RMS velocity (bottom) alternately decays gradually, then rises sharply.

• Flow accelerates as it relaminarizes and as the first signatures of the onset of 
instability appear, then decelerates rapidly as the K-H billows break down.

• Four phases in a cycle:
i. Flow relaminarization and acceleration (‘ramp’)
ii. Growth of K-H instability
iii. Breakdown of K-H billows and flow deceleration (‘cliff’)
iv. Decay of residual turbulence
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[Modified from Znaien et al. 2011]
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• Growth rate of K-H billows is governed by the shear 
that gives rise to the instability.

• Characteristic time of shear given by τs
• Measured τs	ൌ	ሺ0.01‐0.02ሻτN
• Duration of billow growth ൌ	ሺ0.9‐3.2ሻτN

 stabilizing effect of viscosity and confinement?

• Duration of billow breakdown governed by turbulent 
mixing.

• Characteristic time of turbulent mixing given by τm
• Measured τm	ൌ	ሺ0.6‐0.7ሻτN
• Duration of ‘cliff’ phase ൌ	ሺ0.8‐1.6ሻτN

 good agreement!
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t  • Decay of residual turbulence is terminated by the 

arrival of pockets of relatively unmixed fluid.

• We think that these pockets of fluid originate in the 
undisturbed regions beyond the gravity current fronts, 
then propagate upstream.

• path length of pocket = front velocity Vf × t
• time required for pocket to travel this distance is 

given by τg
• Measuredτg ൌ	ሺ8	– 12ሻτN.
• Duration of turbulent decay phase ൌ	ሺ1‐3ሻτN

• Approximate upper (lower) current as a “free rise” (“free fall”).

• During early stages of relaminarization                ~ measured density contrast

• Persistent overestimation attributed to viscous effects.
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acceleration local density contrast

• viscosity negligible.
• density uniform in each layer
• two-layered, laminar, parallel flow
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