Breakthrough could lead to new antimicrobial drugs

Breakthrough could lead to new antimicrobial drugs

Scientists have discovered exactly how some bacteria act to protect themselves when they are threatened or under attack.

After 25 years of painstaking studies – led by Professor Ian Booth at the University of Aberdeen and Dr Tarmo Roosild at Nevada Cancer Institute in Las Vegas – scientists have figured out the mechanics of 'channels' in bacteria which stay shut if all is normal and are triggered to open if they need to mount a defence.

The breakthrough finding published in the journal Structure paves the way for the development of new methods for tackling E.coli, salmonella and brucella infections; as well as the bacteria Pseudomonas, which often colonise the lungs of cystic fibrosis patients and also cause infection in those whose immune systems are compromised.

Professor Booth collaborated with Nevada Cancer Institute and the Salk Institute in San Diego, California on the research which received funding by the Wellcome Trust.

The research focused on E.coli but the protective channel system is common to many pathogens that cause infection and disease.

Professor Booth said: "I started work to understand this system in 1984 so it is tremendously exciting to have made this breakthrough in understanding the molecular workings of these protective channels that are found in several pathogens, many of which are increasingly resistant to traditional antibiotics.

"Our next challenge is to design chemicals that fool the bacterium into locking the channel open all the time, which will then impair its growth, or we could lock it shut so it can't protect itself."

Dr Roosild added:  "Discovery of new drugs through the structural analysis of proteins that underlie diseases, including cancer, and are potentially molecular targets for therapeutic intervention, is the primary focus of our research.

"The hope is that these particular studies will eventually lead to the development of new medicines that will cure people with deep seated bacterial infections such as those in intensive care."

Additional scientists contributing to this breakthrough include Samantha Castronovo at Nevada Cancer Institute, Samantha Miller, Chan Li, Tim Rasmussen, Wendy Bartlett and Banuri Gunasekera at the University of Aberdeen, and Senyon Choe at the Salk Institute.

 

ENDS

Search News

Browse by Month

2024

  1. Jan
  2. Feb
  3. Mar
  4. Apr There are no items to show for April 2024
  5. May There are no items to show for May 2024
  6. Jun There are no items to show for June 2024
  7. Jul There are no items to show for July 2024
  8. Aug There are no items to show for August 2024
  9. Sep There are no items to show for September 2024
  10. Oct There are no items to show for October 2024
  11. Nov There are no items to show for November 2024
  12. Dec There are no items to show for December 2024

2004

  1. Jan
  2. Feb
  3. Mar
  4. Apr
  5. May
  6. Jun
  7. Jul
  8. Aug
  9. Sep
  10. Oct
  11. Nov There are no items to show for November 2004
  12. Dec

2003

  1. Jan
  2. Feb
  3. Mar
  4. Apr
  5. May
  6. Jun
  7. Jul
  8. Aug
  9. Sep
  10. Oct
  11. Nov
  12. Dec There are no items to show for December 2003

1999

  1. Jan There are no items to show for January 1999
  2. Feb There are no items to show for February 1999
  3. Mar
  4. Apr
  5. May
  6. Jun
  7. Jul
  8. Aug
  9. Sep
  10. Oct
  11. Nov
  12. Dec

1998

  1. Jan
  2. Feb
  3. Mar
  4. Apr There are no items to show for April 1998
  5. May
  6. Jun
  7. Jul There are no items to show for July 1998
  8. Aug There are no items to show for August 1998
  9. Sep
  10. Oct
  11. Nov There are no items to show for November 1998
  12. Dec