Dr Alexandra Brand


  Dr Alexandra Brand The University of Aberdeen School of Medical Sciences Dr Alexandra Brand Senior Research Fellow work +44 (0)1224 437495 work +44 (0)1224 437460 work fax +44 (0)-1224-437465 pref

School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD. Office tel: +44 (0)1224-437495.

Senior Research Fellow

Royal Society University Research Fellow

Dr Alexandra Brand

Contact Details

Telephone: +44 (0)1224 437495
+44 (0)1224 437460
Fax: +44 (0)-1224-437465
Email:

a.brand@abdn.ac.uk

Address:

School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD. Office tel: +44 (0)1224-437495.

hCard

The Brand Lab is part of the Aberdeen Fungal Group:

http://www.abdn.ac.uk/ims/research/microbiology/aberdeen-fungal-group-602.php

The AFG is affiliated to the Wellcome Trust Strategic Award: Medical Mycology and Fungal Immunology Group:

http://www.abdn.ac.uk/mmfi

 

 

 


^ top

Biography

2013 Fellow of the Society of Biology

2011-present  Deputy Lead, Microbiology Research Programme, University of Aberdeen

2010 British Mycological Society Berkeley Award for Early-Career Scientists

2010 Medical Research Council New Investigator

2009 Royal Society University Research Fellow

2004 PhD in Microbiology, University of Aberdeen

2000 Bsc Biochemistry 1st Class, University of Aberdeen


^ top

Research Interests

Directional growth in polarised cells

Eukaryotic cells that grow by polarised extension perform specialised, essential functions in vertebrates, plants and fungi.  This disparate group of cells, which includes neurons, pollen tubes, root hairs and fungal hyphae, all share a similar function – they extend through their environment in order to make contact with their own specific target.  To be successful, they must be able to interpret local signals that tell them which direction to grow (navigate) and they must be able to change their direction of growth if necessary (steer).  The environmental signals that help neurons, pollen tubes and fungi to navigate differ greatly but they may share similar steering mechanisms because the cell components that regulate polarised growth are highly conserved.  We are using the dimorphic fungus, Candida albicans, as a model organism in which to study how polarised cells navigate and steer.  C. albicans displays tropic, or pre-programmed, growth behaviour under certain conditions and we are using these responses to study the molecular links between environmental signalling and the machinery that drives tip re-orientation.   We have shown that loss of normal regulation in the hyphal tip correlates with the inability of the fungus to form normal lesions in internal organs during systemic infection.  We want to understand which signals within the human body influence how the hyphal tip behaves during disease progression.

Applied Mycology

Fungi are nature's great re-cyclers and can degrade all kinds of organic and inorganic material into the simple building blocks needed for new growth.  The downside of this phenomenon for human health is that fungi biodegrade medical plastic devices, causing them to malfunction and need replacing.  The upside is that fungi produce a host of bioactive compounds that can be harnessed for medical and industrial use.  With collaborators in the Pharmacy and Chemistry Departments at Queen's Belfast and the University of Edinburgh, respectively, we are interested in both combating and exploiting the complexities of fungal growth.


^ top

Collaborations

Dr Karl Malcolm, School of Pharmacy, Queens University Belfast (Enhanced drug delivery)

Dr Andrew Goryachev, Computational Cell Biology, University of Edinburgh (Cell polarity)

Dr Barnaby Greenland, University of Reading (Pharmaceutical chemistry)

Professor Peter Sudbery, University of Sheffield  (Polarised growth in fungi)

Cheryl Gale, MD, University of Minnesota  (Fungal tip regulation and pathogenesis)

Dr Dominic Campopiano, School of Chemistry, University of Edinburgh

Dr Marco Thiel, University of Aberdeen (Mathematical Biology)

Professor Paul Janmey, University of Pennsylvania (Cell mechanics)

Professor Joe Heitman, Duke University, N. Carolina (Evolution & host-sensing in pathogenic fungi)

Dr Steve Diggle, University of Nottingham (Pseudomonas aeruginosa quorum-sensing)

Dr Alison Crossley, Department of Materials, University of Oxford (Surface chemistry)

 


^ top

Research Grants

2014 BBSRC Eastbio PhD studentship

2013 SEB-funded 4-year PhD studentship

2013 EU Marie Curie studentship 'FungiBrain' with N. Gow, Co-ordinator: Nick Read, Manchester

2012 MSD-SULSA award

2012 MRC Centenary Fund Award

2012 BMS Summer Studentship

2011 Royal Society Equipment Grant

2011 BMS Summer Studentship

2010 BBSRC PhD studentship

2009 MRC New Investigator Grant

2009 - 2017 Royal Society University Research Fellowship

2007 BBSRC Researcher Co-Investigator (project grant with Prof Neil AR Gow)


^ top

Teaching Responsibilities

3rd-Year MC3504 Microbiology practical course

MSc MC5507  Current Techniques in Microbiology

1st-Year SM1501 The Cell 'Fungi - Moulds, Manufacturers and Models'

Honours Year Statistics workshop

Personal tutor for Biochemistry, Genetics, Immunology and Biotechnology undergraduates.


^ top

External Responsibilities

Royal Society Higher Education Steering Group

British Mycological Society - Fungal Biology Research Committee and Council


^ top

Admin Responsibilities

Athena SWAN Committee

Joint Research Committee


^ top

The tropic growth of Candida albicans hyphae is calcium-dependent.

? 

False colour image of thigmotropic growth of C. albicans hyphae on a microfabricated quartz slide with a ridge height of 3.25 ?m.  Growing hyphal tips change direction on contact with obstacles in the substratum.  Deletion of calcium ion channels, or removal of calcium from the growth medium, reduces the sensitivity of hyphal tips to changes in the substratum.

C. albicans hyphae form 2-dimension sinusoidal curves and 3-dimensional helices when grown on semi-solid  medium.  Septa are generally located at the apices of alternate curves, suggesting that curve formation is linked to the cell-cycle.  The formation of curved hyphae is attenuated in mutant strains where calcium ion channels have been deleted, so normal calcium flux and homeostasis is required for the initiation of this growth behaviour.

Like many tip-growing cells, C. albicans hyphae align towards the cathode in an applied electric field.  This effect can be heightened or reduced by the addition or chelation of calcium ions, respectively.

 

Group Members


^ top

Selected Publications

Brand A.C., Morrison, E., Milne, S., Gonia, S., Gale, C.A., and Gow, N.A. (2014) 'Cdc42 dynamics control directional growth responses', PNAS 111:811-6.

Gonia, S., Pulver, R., Morrison, E., Brand A.C and Gale, C.A. (2013) ‘Rax2 is important for directional establishment of growth sites, but not for reorientation of growth axes, during Candida albicans hyphal morphogenesis.’ Fungal Genetics & Biology, doi 10.1016/j.fgb.2013.04.002.

Ene, I.V., Adya, A.K., Wehmeier, S., Brand, A.C., MacCallum, D.M., Gow, N.A., and Brown, A.J. (2012) ‘Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen.’ Cell Microbiology, doi: 10.1111/j.1462-5822.2012.01813.x

‘Host-Fungal Interactions’ in ‘Methods in Molecular Microbiology’, (2012:845) Eds. Brand, A. & D. MacCallum, Humana Press, New York.

Brand, A. (2012) Hyphal growth in human fungal pathogens and its role in virulence, Journal of International Microbiology, 2012;2012:517529. Epub 2011 Nov 9.

Brand A and Gow NA (2011) ‘Tropic orientation responses in pathogenic fungi’ in ‘Fungal Morphogenesis, Topics in Current Genetics’.  Eds: Pérez-Martin & A. di Pietro, Springer, New York.

Chen,Y-L, Brand, A., Morrison, E.L., Silao, F.G., Bigol, S., Malbas, F., Nett, J.E., Andes, D.R., Solis, N.V., Filler, S.G.,  Averette, A. and J. Heitman (2011) Calcineurin controls drug tolerance, hyphal growth, and virulence in Candida dubliniensis. Eukaryotic Cell 10:803-19.

Yang, M., Brand, A., Thyagarajan,S., Soll, D.R. and N.A.R. Gow (2011) Fig1 facilitates calcium influx and localises to membranes destined to undergo fusion during mating in Candida albicans. Eukaryotic Cell 10: 435-44.

Brand A, Lee K, Veses V & NAR Gow Calcium homeostasis is required for contact-dependent helical and sinusoidal tip growth in Candida albicans hyphae. Molecular Microbiology. 2009 71(5): 1155-64. 

Brand A, Barnes JD, Mackenzie KS, Odds FC, and NAR Gow Cell wall glycans and soluble factors determine the interactions between the hyphae of Candida albicans and Pseudomonas aeruginosa.  FEMS Microbiology Letters.  2008 287(1): pp48-55.

Brand A, Vacharaksa A, Bendel C, Norton J, Haynes P, Henry-Stanley M, Wells C, Ross K, Gow NAR and CA Gale  An internal polarity landmark is important for externally-induced hyphal behaviors in Candida albicans.   Eukaryot Cell. 2008 Feb 7(4): pp712-20. 

Brand,A., Shanks,S., Duncan,VMS.; Yang,M.; MacKenzie,K. and Gow,NA. Hyphal orientation of Candida albicans is regulated by a calcium-dependent mechanism, Original Article in Peer Reviewed Journal, 2007, Current Biology, 17, (4): pp347 - 352,

Munro, CA.; Bates, S.; Buurman, ET.; Hughes, HB.; MacCallum, DM.; Bertram, G.; Atrih, A.; Ferguson, MAJ.; Bain, JM.; Brand, A.; Hamilton, S.; Westwater, C.; Thomson, L.; Brown, AJ.; Odds, FC.; and Gow, NA. Mnt1p and Mnt2p of Candida albicans are partially redundant alpha-1,2-mannosyltransferases that participate in O-linked mannosylation and are required for adhesion and virulence, Original Article in Peer Reviewed Journal, 2005, Journal of Biological Chemistry, 280 (2):1051 - 1060,

Brand, A.; MacCallum, D. M.; Brown, A. J.; Gow, N. A. and Odds,F. C.Ectopic expression of URA3 can influence the virulence phenotypes and proteome of Candida albicans but can be overcome by targeted reintegration of URA3 at the RPS10 locus, Original Article in Peer Reviewed Journal, 2004, Eukaryotic Cell, 3 (4): 900 - 9.


^ top

Public Engagement

The Hay Festival, 2014:  'The Next Big Thing': http://www.hayfestival.com/p-8222-liz-tunbridge-alexandra-brand-lucie-green-and-ana-cavalcanti.aspx and https://royalsociety.org/events/2014/05/the-next-big-thing/

Naked Science broadcast:  http://www.thenakedscientists.com/HTML/podcasts/show/2011.08.28/

Naked Science webpage: http://www.thenakedscientists.com/HTML/content/interviews/interview/1783/


^ top

update | about Staff Pages

back